A Search for Time Reversal Invariance Violation in μ Decay

Norbert Danneberg, ETH Zürich

Ph.D. Seminar ETH / Uni Zurich

Oktober 3.-5. 2000 Zurich

Search for physics beyond the Standard Model with `small` experiments

Transversal polarization of e^+ from μ^+ decay would be an indication of new physics

")x is the reduced energy $x=rac{E_{e^+}}{E_{max}}$, η and eta/A are Michel parameters

Time Reversal Violation in a purely leptonic decay

Search for new scalar couplings

$\eta =$	$\frac{1}{2}Re$	$\left\{g^S_{RR}\right\}$
----------	-----------------	---------------------------

Model independent measurement of G_F

$$G_F = \sqrt{192 \,\pi^3 \frac{1}{\tau_\mu m_\mu^5} \left(1 - 4 \,\eta \frac{m_e}{m_\mu}\right)}$$

Measure e⁺ Polarization via the Spin Dependent e⁺ e⁻ Annihilation-Cross-Section

μ Spin rotates with ω around z axis Decay e⁺ and polarized e⁻ annihilate into two detected photons Ψ depends on e⁺ polarizaton

How would a P_T Signal look like ?

Simulated photon intensity distribution on the BGO wall¹⁾

Transverse polarization gives an oscillation signal with frequency ω in the time spectrum of the annihilation photons. Here ω is the spin precession frequency and t is the time from μ -stop to its decay.

Analysis Step One: Reconstruction

Reconstruction efficiency

Analysis, Step Two: From Raw Data to `Good` Events

Energy ($E_{tot} = E_{\gamma_1} + E_{\gamma_2}$) spectra of annihilation events

After all cuts ≈17% `good` annihilation events remain.

Cut on the Kinematics to Extract the 'Good' Events

Calculate ϑ in two different ways:

Sample from the last run

 $\cos\vartheta = \vec{n}_{\gamma_1} \cdot \vec{n}_{\gamma_2}$

for 'good' annihilations

Use Monte Carlo to Find Optimal ϑ Cut

Annihilations in the foil

Background

 $artheta^{Geom}$ - $artheta^{Energy}$ for good annihilations

Triggering on Two Photons at a minimal Distance: The Cluster Recognition Unit

How does it work?

Kinematics require a minimal cluster distance

 $\cos \vartheta = 1 - m_e \frac{4}{E_{e^+}} \quad d = 2z \tan \frac{\vartheta}{2}$ $d_{min} = d(E_{e^+} = 50 MeV) \approx 16 \, cm$

FPGA aproach allows redefining trigger conditions `on the fly`

Data is Calibrated with Cosmic Muons

Energy Resolution Was Measured With a Am-Be Source

Theoretical and Experimental Analyzing Power

The analyzing power is the amplitude of the expected oszillation

 $\mathcal{A} = S \cdot \sqrt{P_1^2 + P_2^2} \cdot \sqrt{A_x^2 \cos^2 \psi + A_y^2 \sin^2 \psi}$

Theoretical analyzing power, $\Psi = 90^{\circ} P_{\rho^{-}} = 100\%, |P_{\tau}| = 1$

Analyzing Power of `good` annihilation events, $P_e^{} = 100\%$, assumed. A_x and $A_y^{}$ are functions of the photon energies

Background is Dominated by Bremsstrahlung

μSR Effect is used to find the direction of the Muon Spin

Amplitude of the μSR Effect as a Function of Distance ρ From the Symmetry Axis

The blue line indicates theoretical expectation

Phases and Amplitudes for all ϕ - bins

Average μ SR amplitude: 0.297 \pm 0.004, consistent with theory.

A First Fit to the Data: P_T at the Time of Annihilation

Fitting the components P₁ and P₂ using a Log Likelihood parameter estimation

Final Step: Rotating $P_{1/2}$ to become $P_{T_{1/2}}$

The Transverse Polarization Components P_{T1} and P_{T2}

Foil Polarization: Sensitivity-Check Measure the Positrons Longitudinal Polarization

No Evidence for Additional Scalar Couplings in Muon Decay

Green circle: Result of a general analysis including all possible left- righthanded scalar, vector and tensor couplings. Red circle: Only one additional righthanded scalar coupling interferes with the lefthanded vector coupling in the SM.

Outlook

