A Search for Time Reversal Invariance Violation in μ Decay

Norbert Danneberg, ETH Zürich

Ph.D. Seminar ETH / Uni Zurich

Oktober 3.-5. 2000 Zurich

Search for physics beyond the Standard Model with `small` experiments

Transversal polarization of e^{+}from μ^{+}decay would be an indication of new physics

SM:
$P_{T_{1}} \approx 0$ beyond SM: ${ }^{1)}$
$P_{T_{2}}=0$

$$
P_{T_{1}}(x) \approx-\frac{2 \eta}{3-2 x}
$$

current limits
0.016 ± 0.021
${ }^{1)} \boldsymbol{x}$ is the reduced energy $x=\frac{E_{e^{+}}}{E_{\max }}, \eta$ and β / A are Michel parameters

Time Reversal Violation in a purely leptonic decay

\neq

Search for new scalar couplings

$$
\eta=\frac{1}{2} R e\left\{g_{R R}^{S}\right\}
$$

Model independent measurement of G_{F}

$$
G_{F}=\sqrt{192 \pi^{3} \frac{1}{\tau_{\mu} m_{\mu}^{5}}\left(1-4 \eta \frac{m_{e}}{m_{\mu}}\right)}
$$

Measure e^{+}Polarization via the Spin Dependent $e^{+} e^{-}$Annihilation-Cross-Section

μ Spin rotates with ω around z axis
Decay e^{+}and polarized e^{-}annihilate into two detected photons
Ψ depends on e^{+}polarizaton

How would a P_{T} Signal look like ?

Simulated photon intensity distribution on the BGO wall ${ }^{1)}$

No Transversal Polarisation

$\left|P_{\backslash}\right|=1$

Time spectrum for fixed $\Delta \psi$ \mathcal{A} and α are functions of $P_{T_{1}}$ and $P_{T_{2}}$

Transverse polarization gives an oscillation signal with frequency ω in the time spectrum of the annihilation photons. Here ω is the spin precession frequency and t is the time from μ-stop to its decay.

[^0]
Analysis Step One: Reconstruction

Calibration constant

Reconstruction efficiency

Two clusters and at leaset one reconstructed track required

Analysis, Step Two: From Raw Data to `Good` Events

Energy $\left(E_{\text {tot }}=E_{\gamma_{1}}+E_{\gamma_{2}}\right)$ spectra of annihilation events

After all cuts $\approx 17 \%$ `good` annihilation events remain.

Cut on the Kinematics to Extract the 'Good' Events

Calculate ϑ in two different ways:

Energy:
$\cos \vartheta=1-m_{e} \frac{E_{\gamma_{1}}+E_{\gamma_{1}}}{E_{\gamma_{1}} \cdot E_{\gamma_{1}}}$
Geometry
$\cos \vartheta=\vec{n}_{\gamma_{1}} \cdot \vec{n}_{\gamma_{2}} \quad$ for 'good' annihilations

Use Monte Carlo to Find Optimal ϑ Cut

Annihilations in the foil
Background
$\vartheta^{\text {Geom }}-\vartheta^{\text {Energy }}$
for good annihilations

Triggering on Two Photons at a minimal Distance: The Cluster Recognition Unit

How does it work?

Kinematics require a minimal cluster distance

$$
\begin{aligned}
\cos \vartheta & =1-m_{e} \frac{4}{E_{e^{+}}} \quad d=2 z \tan \frac{\vartheta}{2} \\
d_{\min } & =d\left(E_{e^{+}}=50 \mathrm{MeV}\right) \approx 16 \mathrm{~cm}
\end{aligned}
$$

FPGA aproach allows redefining trigger conditions `on the fly`

Distance between two clusters

Data is Calibrated with Cosmic Muons

Reconstructing the cosmic tracks gives the tracklength in BGOs

Monte Carlo

Histogram Adc/x for cosmics

Energy Resolution Was Measured With a Am-Be Source

Theoretical and Experimental Analyzing Power

The analyzing power is the amplitude of the expected oszillation

Theoretical analyzing power, $\Psi=90^{\circ} P_{e^{-}}=100 \%, I P_{V}=1$

Background is Dominated by Bremsstrahlung

No cuts applied Kinematics cut applied

Background as a function of the cut

- Annihilations elsewhere
- Annihilations in Foil

Single Bremsstrahlung
Double Bremsstrahlung

μ SR Effect is used to find the direction of the Muon Spin

Amplitude of the μ SR Effect as a Function of Distance ρ From the Symmetry Axis

Divide fiducial area on the magnetized foil into ρ and ϕ bins

The blue line indicates theoretical expectation

Phases and Amplitudes for all ϕ - bins

Stability of the Time-Zero during the whole run

Time-Zero : 10.67 ± 0.187 ns gives the time, when the muon spin shows upward.

Average μ SR amplitude: 0.297 ± 0.004, consistent with theory.

A First Fit to the Data: P_{T} at the Time of Annihilation

Fitting the components P_{1} and P_{2} using a Log Likelihood parameter estimation

Use the diff. annihilation cross-section

$$
\begin{aligned}
\frac{1}{\sigma_{0}} \cdot \frac{d \sigma}{d \Omega} & =1+\mathcal{A} \cdot \sin (\omega t+\alpha) \\
& =: f\left(P_{1}, P_{2}, E_{\gamma_{1}}, E_{\gamma_{2}}, \Psi, t\right)
\end{aligned}
$$

where amplitude and phase are functions of the Energy and Ψ

$$
\begin{aligned}
& \mathcal{A}=\mathcal{A}\left(P_{1}, P_{2}, E_{\gamma_{1}}, E_{\gamma_{2}}, \Psi\right) \\
& \alpha=\alpha\left(P_{1}, P_{2}, E_{\gamma_{1}}, E_{\gamma_{2}}, \Psi\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}\left(P_{1}, P_{2}\right) & :=-\ln \prod_{i}^{n} f\left(P_{1}, P_{2}, E_{\gamma_{1}}^{i}, E_{\gamma_{2}}^{i}, \Psi^{i}, t^{i}\right) \\
& =-\sum_{i}^{n} \ln f^{i}\left(P_{1}, P_{2}\right)
\end{aligned}
$$

where n is the number of 'good' annihilation events

Final Step: Rotating $P_{1 / 2}$ to become $P_{T_{1 / 2}}$

from μ SR Effect

Rotation of a transverse positron polarization component in the WEB magnetic field (MC)

The Transverse Polarization Components $P_{T_{1}}$ and $P_{T_{2}}$

$\mathbf{Q}^{L^{2}}$

Foil Polarization: Sensitivity-Check Measure the Positrons Longitudinal Polarization

$$
\text { you are }{ }^{W \epsilon}
$$

No Evidence for Additional Scalar Couplings in Muon Decay

Green circle: Result of a general analysis including all possible left- righthanded scalar, vector and tensor couplings. Red circle: Only one additional righthanded scalar coupling interferes with the lefthanded vector coupling in the SM.

Outlook

$$
\text { are welcome to visit Kail Köhlers talk on Wednesday at } 11: 00
$$

You are ${ }^{w}$

[^0]: ${ }^{1)} P_{\mathrm{T}} @ 45^{\circ}, E_{\gamma_{1}}=E_{\gamma_{2}}=10 \mathrm{MeV}, e^{-}$Polarisation in magn. Foil 100%

