Proton-Antiproton Annihilation into Three Pseudoscalar Mesons at 900 MeV/c

Matthias Heinzelmann

Universität Zürich

CRYSTAL BARREL Collaboration

$$q = u, d, s, c, b, t$$

the quarks are bound by gluons:

S = 0, 1 $L = 0, 1, 2, \dots$

$$n^{2S+1}L_J = nJ^{PC}$$

n	principal quantum n	umber
J	spin of meson	$\vec{J} = \vec{L} + \vec{S}$
P	parity	$P(q\bar{q}) = -(-1)^L$
C	charge parity	$C(q\bar{q}) = -(-1)^{L+S}$

$^{1}\mathrm{S}_{0}$	0^{-+}	pseudo scalar	$^{3}\mathrm{S}_{1}$	1	vector
$^{3}\mathrm{P}_{1}$	0^{++}	scalar	$^{3}\mathrm{P}_{2}$	2^{++}	tensor

Light Quarks

 $u, d, s \quad (\bar{u}, \bar{d}, \bar{s})$ 9 possible $q\bar{q}$ combinations for each J^{PC} nonet

isospin I:	u	$\mathbf{I} = +\frac{1}{2}$
	d	$\mathrm{I}=-rac{1}{2}$
	s	$\mathbf{I} = 0$

$\mathbf{I}=0:$	$f_J()$	e.g. $f_0(1500)$	J	spin
I = 1:	$a_J()$	e.g. $a_2(1320)$	••••	mass

other possibilities:

gg glueballs $q\bar{q}g$ hybrids $q\bar{q}q\bar{q}$ molecules

which are the nonet members ?

0^{++} Nonet

• too many 0^{++} mesons:

$f_{0}(980)$	$a_0(980)$	$f_0(1370)$	$K_0^*(1430)$
1	3	1	4
$a_0(1450)$	$f_0(1500)$	$f_0(1710)$	\sum
3	1	1	14

• lightest glueball (predicted by lattice QCD):

 0^{++} I = 0 (observed as $f_0(....)$) $m = 1500 - 1700 \text{ MeV}/c^2$

• which is the $s\bar{s}$ member ? $f_0(1500) \Leftrightarrow f_0(1710)$?

search for the decay of the $f_0(1710)$ into $\pi\pi$ and $\eta\eta$

$$\overline{p}p \rightarrow \pi^0 f_0(1710) \rightarrow \pi^0 \pi^0 \pi^0$$

 $\rightarrow \pi^0 \eta \eta$

Crystal Barrel Experiment (CERN)

1989 - 1996

- highly efficient detection of charged and neutral particles
- good energy and momentum resolution of final state particles
- solid angle coverage: $97\% \ 4\pi$ neutral particles $95 - 64\% \ 4\pi$ charged particles
- efficient hard- and software trigger (e.g. 'all neutral')

Data Selection

• $\overline{p}p$ annihilation in-flight at 900 MeV/c

• 6 photon final states, selected from 17.8 M 'all neutral' triggered events on tape

• all possible 15 $\gamma\gamma$ combinations of 6 photons:

• 4γ combinatorics:

- kinematic fit: energy/momentum conservation
 - masses of π^0/η
 - free annihilation vertex along **z**

• anti-cuts against: crosstalk

background (e.g. $\omega\omega$)

- $\begin{array}{ccc} 600'962 & \pi^{0}\pi^{0}\pi^{0} \\ 156'886 & \pi^{0}\pi^{0}\eta \\ 16'081 & \pi^{0}\eta\eta \end{array} \right\} \text{ events}$
- same selection chain for Monte Carlo simulated events (efficiencies ~ 26 %)

Dalitzplot

invariant mass squares: $m_{ij}^2 = (E_i + E_j)^2 - (\vec{p}_i + \vec{p}_j)^2$

no resonance (phase space): Dalitzplot homogenously populated

m ²(πղ) **m²(**πη) *m*²(תון) **m** m *m²(*πη*)* **m²(**πղ) n2 (m)

resonance (no spin): band in Dalitzplot

resonance (with spin): band with angular distribution

m²(πη)

$\pi^0\eta\eta$ Data

Projections of the Dalitzplot

Partial Waves

$\overline{p}p$	J M	total spin of the $\overline{p}p$ system helicity (projection of spin onto z-axis)
$f_2 \pi^0$	Ω l	production angles of the resonance angular momentum between resonance and spectator
$\eta\eta\pi^0$	$\Omega^{'} \ {f s} \ \lambda$	decay angles of the resonance spin of the resonance helicity of the resonance

$$A_{M}^{J^{PC}} = \alpha_{l,s}^{J^{PC}} \cdot H_{M}^{J^{PC}} \cdot f_{M}^{l,s,\lambda}(\Omega, \Omega') \cdot \widehat{F}(m)$$

$lpha_{l,s}^{J^{PC}}$	resonance production strength	
$H_M^{J^{PC}}$	$\overline{p}p$ production amplitude	
$f_{M}^{l,s,\lambda}(\Omega,\Omega^{'})$	helicity amplitude	
$\widehat{F}(m)$	dynamical function, K-matrix or	
	Breit-Wigner function	

Partial Wave Analysis

weight of i^{th} event \propto probability :

$$\mathbf{w_i} = |\sum A_{M=0}^{S=0}|^2 + |\sum A_{M=-1}^{S=1}|^2 + |\sum A_{M=0}^{S=1}|^2 + |\sum A_{M=1}^{S=1}|^2$$

maximise likelihood of the n events :

$$\mathcal{L} = n! \prod_{i=1}^{n} P_i = n! \prod_{i=1}^{n} \frac{w_i}{\sum w_j^{MC}}$$

high statistics data sets:

- recalculate w_i in every iteration step for every event (data and Monte Carlo) (~ 1'000'000 events for $\pi^0 \pi^0 \pi^0$)
- typically 100'000 200'000 iterations per fit

therefore:

- optimisation of the algorithms
- high performance hardware (~ 40 50 times faster than PC)

 \Rightarrow each fit lasted 10 - 20 hours

Basic Hypothesis for $\pi^0 \eta \eta$

$$\overline{p}p \rightarrow f_0(1370) \quad \pi^0$$

$$\overline{p}p \rightarrow f_0(1500) \quad \pi^0$$

$$\overline{p}p \rightarrow a_0(980) \quad \eta$$

$$\overline{p}p \rightarrow a_0(1450) \quad \eta$$

$$\overline{p}p \rightarrow a_2(1320) \quad \eta$$

$$N_{parameter} = 45$$

 $\chi^2/\ dof = 1466/770 = 1.90$ (Dalitz plot)

Best Hypothesis for $\pi^0\eta\eta$

requires a $f_2(1880)$ with: $m = 1877 \pm 30 \text{ MeV}/c^2$ $\Gamma = -318 \pm 55 \text{ MeV}/c^2$ no $f_J(1710)$

is the $f_2(1880)$ the same object as in $\pi^0 \eta \eta$ with $m = 1820 + \frac{57}{-10} \text{ MeV}/c^2$, $\Gamma = 358 \pm 42 \text{ MeV}/c^2$?

 $\Rightarrow \quad \text{coupled fit of } \pi^0 \eta \eta \text{ and } \pi^0 \pi^0 \pi^0$ some parameters are the same in both data sets, e.g. mass and width of the $f_2(1880)$

 \Rightarrow good simultaneous description of both data sets

$\underline{\mathbf{Results}}$

$f_2(1870)$	\diamond	first observation of a broad 2^{++} state around 1900 MeV/ c^2 decaying into $\pi^0 \pi^0$ and $\eta \eta$
	\diamond	mass: $1867 \pm 46 \text{ MeV}/c^2$ width: $385 \pm 58 \text{ MeV}/c^2$
	\diamond	$\frac{\gamma^2(f_2(1870) \to \eta\eta)}{\gamma^2(f_2(1870) \to \pi\pi)} = 0.20 \pm 0.07$
	\$	member of a radial excitation of the tensor nonet ?
$a_2(1660)$	\diamond	first definitive observation in the $\pi^0 \pi^0 \eta$ final state
	\diamond	mass: $1698 \pm 44 \text{ MeV}/c^2$ width: $265 \pm 55 \text{ MeV}/c^2$
	\diamond	parameters in good agreement with previous measurement
	\diamond	radial excitation ?
$f_{J}(1710)$	\diamond	not seen in $\pi^0 \pi^0 \pi^0$ and $\pi^0 \eta \eta$ (upper limits) $\Rightarrow f_J(1710)$ has a large $s\bar{s}$ content
	\diamond	other experiments: $J = 0$, mostly $s\bar{s}$
	\Rightarrow	very likely the $s\bar{s}$ member of the 0 ⁺⁺ nonet
	\Rightarrow	$f_0(1500)$ supernumerary: further evidence for the $f_0(1500)$ being the ground state glueball

Conclusions

- complete description of the $\pi^0 \pi^0 \pi^0$, $\pi^0 \pi^0 \eta$ and $\pi^0 \eta \eta$ data sets at 900 MeV/c
- coupled fit of $\pi^0 \pi^0 \pi^0$ and $\pi^0 \eta \eta$
- first observation of the $f_2(1870)$ in the $\pi^0 \pi^0 \pi^0$ and $\pi^0 \eta \eta$ data sets
- first definite observation of the $a_2(1660)$ in $\pi^0 \pi^0 \eta$
- the $f_2(1565)$ is also required in $\overline{p}p$ annihilation in-flight
- high contribution of the $f_2'(1525)$ to $\pi^0\eta\eta$