Diffractive Charm Production in Deep Inelastic Scattering

Stefan Hengstmann, UNI Zürich, H1–Collaboration

- Diffraction at HERA
- Models of diffractive charm production
- Data selection and measurement
- Discussion of results

Diffractive DIS events in the H1 detector

- Experimental Signature
 - ▷ 'Gap' in pseudorapidity $\eta = -\ln \tan(\theta/2)$ and no signals in very forward detectors. → Diffractive Event
- Deep Inelastic Scattering: Positron is measured in main detector

Kinematics of diffractive scattering

Diffractive interactions ep → eXY due to Pomeron (IP)
 exchange (IP carries vacuum quantum numbers)

$$Q^{2} = 4 \cdot E \cdot E' \cos^{2} \frac{\theta}{2} \qquad y = 1 - \frac{E'}{E} \sin^{2} \frac{\theta}{2} \qquad x = \frac{Q^{2}}{y \cdot s}$$

S. Hengstmann, Zürich Ph.D. Student Seminar, 03/10/2000

Diffractive structure function $F_2^{D(3)}$

- Interpret IP as object with partonic structure
- Probe IP structure in terms of diffractive structure function

$$\frac{d^3\sigma(ep \to eXY)}{d\beta dQ^2 dx_{I\!\!P}} = \frac{4\pi\alpha_{em}^2}{\beta Q^4} \left(1 - y + \frac{y^2}{2}\right) F_2^{D(3)}(x_{I\!\!P}, \beta, Q^2)$$

- eta is analogue of scaling variable x in inclusive DIS
- Assume factorization into two independent terms

$$F_2^{D(3)}(x_{I\!\!P},\beta,Q^2) = f_{I\!\!P}(x_{I\!\!P}) \cdot F_2^{I\!\!P}(\beta,Q^2)$$

- \rightarrow IP flux f_{IP} (Regge) proportional to $(1/x_{IP})^{1+2\varepsilon}$ (ε small)
- Express IP structure function in terms of parton distributions

$$F_2^{\mathbb{IP}}(\beta, Q^2) = \beta \sum_i e_i^2 f_i(\beta, Q^2)$$

 \triangleright Determine PDF of IP by QCD analysis \leftrightarrow DGLAP evolution

- Three different starting parameterizations for the PDF
 - Fit 1: quarks dominated
 - Fit 2 and 3: gluon dominated

H1 1994

- Scaling violation rises with Q^2 for $\beta < 0.9$ × Fit 1 does not describe scaling violation of $F_2^{D(3)}$
- 🧹 Fit 3 gives a good description of data

${\rm I\!P}$ parton distributions resulting from fit 2 and 3

- In both fit 2 and 3 the fractional IP momentum carried by gluons decreases with increasing Q² from ~ 90%(4.5GeV²) to ~ 80%(75GeV²)
- \Rightarrow Data favour large gluon component in ${
 m I\!P}$

- Charm directly probes the role of gluons in diffractive exchange
- Charm mass provides a hard scale → pQCD
- Open charm free from uncertainties relating to bound states, eg. J/ψ
- Study of charm tests underlying dynamics of diffraction
 - Resolved pomeron model?
 - ▷ 2 gluon exchange?
 - Soft Color Interactions?

Models of diffractive Charm–Production

- \mathbb{P}
- → Implemented in Monte Carlo generator RAPGAP

2-Gluon-Model

(e.g.Bartels, Lotter, Wüsthoff)

- \triangleright Diffractive charm production by perturbative 2g-exchange
- ▷ Cross section $\sigma \sim (gluon \ density)^2$ in the proton
- → Implemented in RAPGAP

(e.g. Rathsman, Ingelmann)

Soft Color Interactions (SCI)

- Soft color exchange between outgoing partons
 ⇒ net color singlet exchange
- > Around 10% of charm events have a large rapidity gap
- ▷ Gluon radiation from $c\bar{c}$ supressed by charm quark mass ⇒ low mass system X ($z_{I\!\!P} \to 1$)
- → Implemented in AROMA 2.2.

Model comparison

 $\triangleright z_{I\!\!P}$ distribution peaks towards high values for both 2 gluon and SCI model ($z_{I\!\!P} \approx M_{c\bar{c}}/M_X$).

 \triangleright Res. IP model predicts z_{IP} dominated by low values

Data and event selection

Data selection

- \triangleright Integrated lumi 95, 96, 97 $\Rightarrow \mathcal{L} = 21.7 \ p b^{-1}$
- ▷ Trigger: 6 GeV positron + tracks in central detector

• Kinematic region

- \triangleright 2GeV² < Q^2 < 100GeV²
- ▷ 0.05 < y < 0.7
- $\triangleright p_T(D^*) > 2 \text{ GeV}$
- $|\eta(D^*)| < 1.5$
- Selection of charm events
 - Standard track quality cuts

Inclusive D^* mesons

Reconstruction of D^{*} mesons

- ▷ Mass difference $\Delta m = M(K^-\pi^+\pi^+) M(K^-\pi^+)$
- ▷ Fit function: $a(\Delta m m_{\pi})^{b}$ + Gauss
- \Rightarrow Number of D^* mesons: $N_{D^*} = 1015 \pm 55$
- \Rightarrow Width: $\sigma_{\Delta m} = 1.12 \pm 0.06$ MeV
- Overall and differential cross sections in good agreement with expectation
- $\checkmark D^{\star}$ and DIS selection efficiencies understood.

Selection of diffractive events

$$\triangleright \eta_{max} < 3.3$$

▷ No signals in forward detectors: N_{hit} in fwd- $\mu \leq 1$ and no hit in any scintillators of proton remnant tagger

 \triangleright η_{max} -cut on system X

$$\Rightarrow x_{I\!\!P} = \frac{\sum_X (E+p_z)}{2 \cdot E_p} < 0.04$$

No detection of system Y in forward detectors

 $\Rightarrow M_Y < 1.6 \text{ GeV} \text{ and } |t| < 1 \text{GeV}^2$

 $\sum_{X} (E + p_z)$ calculated using tracks and clusters

Number of diffractive D^{*} mesons: N_{D*} = 41 ± 9
Cross Section in visible kinematic region
2 < Q² < 100 GeV², 0.05 < y < 0.7, p_T(D^{*}) > 2 GeV,

 $|\eta(D^{\star})|<1.5,\,x_{{I\!\!P}}<0.04,\,M_Y^{}<1.6~{\rm GeV}$ and $|t|<1~{\rm GeV}^2$

 $\sigma(ep \rightarrow e(D^{*\pm}X)Y) = (184 \pm 42(stat.) \pm 46(syst.)) \text{ pb}$

Model predictions $\sigma(ep \to e(D^{*\pm}X)Y)$

•	Measurement	$184 \pm 42 \pm 36 \text{ pb}$	
⊳	RAPGAP resolved ${\rm I\!P}$		
	$\mu^{2} = Q^{2} + p_{\perp}^{2} + 4m_{c}^{2}$		
	$m_c = 1.5 \; { m GeV}$		
	$\lambda_{QCD}=0.25~{ m GeV}$, $N_f=5$		
	$F_2^{D(3)}$ fit 2	$540~{ m pb}$	
	$F_2^{D(3)}$ fit 3	$630~{ m pb}$	
	$F_2^{D(3)}$ fit 1	$60~{ m pb}$	
	$m_c = 1.35 { m ~GeV}$		
	$F_2^{D(3)}$ fit 2	$610~{ m pb}$	
	$m_c = 1.5 { m ~GeV}$		
	$\lambda_{QCD}=0.239~{ m GeV}$, $N_f=4$		
	$F_2^{D(3)}$ fit 2	$500~{ m pb}$	
⊳	2 gluon model		
	GRV LO	$122 \mathrm{pb}$	
	GRV HO	80 pb	
⊳	SCI		
	$\mu^2 = \hat{s}$	$400~{ m pb}$	

S. Hengstmann, Zürich Ph.D. Student Seminar, 03/10/2000

Systematic Errors

- \rightarrow 17.5% acceptance correction using simulation of different generators RAPGAP (res. IP) and AROMA (SCI) $(x_{IP}, z_{IP}, \beta, t)$
- \rightarrow 10% uncertainty of fitting procedure
- \rightarrow 4.5% uncertainty in measured energy of scattered electron
- \rightarrow 7.5% reconstruction efficiency of CJC (three tracks)
- \rightarrow 6% trigger efficiency
- \rightarrow 6% M_Y smearing (DIFFVM MC–Generator)
- \rightarrow 6% noise in forward detectors
- \rightarrow 2.5% high $x_{I\!\!P}$ background ($x_{I\!\!P} > 0.1$ or $M_Y > 5$ GeV)
- \rightarrow 3% branching fraction
- \rightarrow 1.5% luminosity
- \rightarrow 1.5% Δm mass reflections
- \Rightarrow 25% total

 p_T^* : Transverse momentum of D^* in $\gamma^* {\rm I\!P}$ CMS

- Shape of spectra agree well with resolved IP model
- Resolved IP and SCI model fail in overall normalisation
- 2 gluon model matches the data in low p_T^* and low $x_{I\!\!P}$ range but fails in high p_T^* , high $x_{I\!\!P}$ (M_X) range

More differential cross sections

Low β region not described by 2 gluon model

S. Hengstmann, Zürich Ph.D. Student Seminar, 03/10/2000

Differential cross section $d\sigma/dz_{IP}^{\ \ obs}$

- ▷ The data show a sizeable fraction of charm production at low z_{IP}^{obs} ('resolved pomeron interaction')
- ▷ Models where the hadronic system X predominantly consists of $c\bar{c}$ system alone are disfavoured
- In a perturbative 2 gluon approach higher order contributions are clearly required, e.g.

S. Hengstmann, Zürich Ph.D. Student Seminar, 03/10/2000

Comparison between ZEUS and H1 results

H1	ZEUS		
$2 < Q^2 < 100~{ m GeV}^2$	$3 < Q^2 < 150~{ m GeV}^2$		
0.05 < y < 0.7	0.02 < y < 0.7		
${^p}_T(D^{\star})>2~{ m GeV}$	$p_{m{T}}(D^{m{\star}}) > 1.5~{ m GeV}$		
$\eta_{max} < 3.3$	$\eta_{max} < 1.5$		
$0 < x_{I\!\!P} < 0.04$	$0.002 < x_{I\!\!P} < 0.012$		
$M_{oldsymbol{Y}}^{} < 1.6~{ extsf{GeV}}^{} t < 1~{ extsf{GeV}}^2$	$M_Y = m_p$		
$0 < \beta < 1.0$	0 < eta < 0.8		
Results			
$N_{D^{\star}} = 41 \pm 9 (\mathcal{L} = 21.72 \text{ pb}^{-1})$	$N_{D^{\star}} = 59 \pm 9$ ($\mathcal{L} = 43.3 \text{ pb}^{-1}$)		
$184\pm42(stat.)\pm46(syst.)~{ m pb}$	$379\pm 66(stat.){+99 \atop -140}(syst.)$ pb		

- ! Cannot directly compare results
- ZEUS in agreement with resol. IP prediction (326 pb) but within $\sim 1.3\sigma$ compatible with being factor 3 below

- efficiency drops from $\mathcal{O}(40~\%)$ to $\mathcal{O}(10~\%)$ consistent with ZEUS arepsilon
 - Cross section $\sigma = (166 \pm 74)$ pb still factor 2 below resol. IP model

- \Rightarrow H1 and ZEUS only hardly compatible within large errors
- S. Hengstmann, Zürich Ph.D. Student Seminar, 03/10/2000

Diffractive dijet production in DIS

- IP structure is tested at H1 with dijets production
- ▷ High p_T jets ($p_{T,jets}^* > 4$ GeV in $\gamma^* p$ CMS) introduce hard scale $\mu^2 \rightarrow$ production mechanism PGF
- ▷ Kinematic range: $4 < Q^2 < 80 \text{ GeV}^2$, 0.1 < y < 0.7

 $x_{I\!\!P} < 0.05$, $M_Y < 1.6~{
m GeV}$ and $|t| < 1~{
m GeV}^2$

- Resolved IP model (fit 2) in perfect agreement with data in both shape and overall normalization
- \Rightarrow Diffractive dijet data support the resolved IP model

Conclusions

- Use charm as key to diffractive interactions
- Measurements of differential cross sections have been presented; they are able to discriminate between different models
 - ▷ 2 gluon approach does not describe data → need contribution from $q\bar{q}g$ processes
 - Distributions are well described in shape by the resolved IP model
- In the probed range, about 4.5% of charm production is diffractive this is below the expectation based on the resolved IP model with experimental parton distributions
 H1 dijet and ZEUS D* consistent with expectation
- Descrepancy not solvable with present experimental precision
 Need to expand dataset to get final answer !