

Higgs Searches in L3 and at LEP

André Holzner ETH Zürich

PhD Students Seminar October 3 - 5, 2000

- Motivation
- The L3 detector at LEP
- The Year 2000 data sample
- Signal and background processes
- HZ \rightarrow qqqq in L3
- How to calculate confidence levels
- Combined L3 results
- Combined LEP results
- Conclusions

Why do we look for a Higgs field/particle ?

- The Lagrangian of the Standard Model of Electroweak interactions (SM) describes Particles with nonzero masses (the W^{\pm} , Z, quarks and Leptons)
- \rightarrow divergences in all orders of the perturbation calculation (massive bosons in loops)
- The ground state ('vacuum') is not minimizing the energy because of mass terms in the Lagrangian
- Expand perturbation series around a different ground state which is an energy minimum
- Freedom to choose between several equivalent ground states \rightarrow four new degrees of freedom
- Three are eaten up by the longitudinal W^{\pm} and Z, one remains

• This also keeps the cross section of the process $W^+W^- \rightarrow W^+W^-$ finite for large center of mass energies

Year 2000 data sample

• Year 2000 L3 analyzed luminosity so far:

- \bullet 170.7/pb analyzed so far
- Excellent LEP performance
- Data is still coming in !

Most important background processes

- $\bullet q ar q (\gamma)$
- W and Z pair production
- Background cross sections up to two orders of magnitude higher than typical signal cross sections

How can Higgs Bosons be produced at LEP ?

 \bullet Dominant graphs: Higgs Strahlung and W/Z fusion

• Evolution of the cross section:

• Higgs decays mainly into a b quarks at masses of current interest

$HZ \rightarrow qqqq$ analysis in L3

- Preselection to eliminate some backgrounds while keeping signal efficiency high (typ. 80%):
 - number of tracks ≥ 10
 - number of calorimetric clusters ≥ 20
 - perpendicular and transverse imbalance \leq 0.3
 - -visible energy $\geq 60\%$ of the Center of Mass Energy
 - effective center of mass energy $\geq 70\%$ of Center of Mass Energy
 - $\log(Y_{34}^{ ext{Durham}}) \geq -5$
- Remaining backgrounds: $e^+e^- \rightarrow q\bar{q}, W^+W^-, ZZ$
- Two neural networks are trained to discriminate the HZsignal against the $q\bar{q}$ and WW background
- A final variable is constructed from the Neural network outputs and the reconstructed Higgs candidate mass

Flow of the HZ \rightarrow qqqq Analysis

$HZ \rightarrow qqqq$ analysis in L3

B tag distribution after preselection

Reconstructed Higgs candidate mass distribution after preselection

(Left: Background and Data, Right: Higgs for $m_H = 114$ GeV)

Product of anti $q\bar{q}$ and anti WW Networks after selection:

Reconstructed Higgs candidate mass distribution tight selection

(Left: Background and Data, Right: Higgs for $m_H = 114$ GeV)

Results of the analysis

Final variable distribution (combination of mass and neural network output) for a Higgs mass hypothesis of 114 GeV:

No significant excess observed

Most significant candidate for $m_h^{\text{hyp}} = 114 \text{GeV}$:

How to calculate confidence levels

- Goal of the analysis: Assess the presence or absence of a signal
- From the final variable distributions, an estimator is calculated which is high for background-like experiments and low for signal+background-like experiments
- Most commonly used estimator:

$$-2\lnrac{\mathcal{L}(x|s+b)}{\mathcal{L}(x|b)}=-2\ln Q$$

where

$$\mathcal{L}(x|b) = ext{Likelihood of } x ext{ under the hypothesis } b = ext{product of Poisson probabilities}$$

- x can be:
 - data
 - background
 - signal + background

From the expected signal and background distributions, several thousand outcomes are thrown to get the spectra of the background and signal + background estimators.

Example of background and signal + background estimator spectra:

Preliminary L3 results (all channels combined)

 $-2 \ln Q$ as function of the Higgs mass of the combined L3 results (145 pb^{-1})

'L3 SM Results 'aug_jin_dat_ucsd_split19992000

How to calculate confidence levels

Given the value of $-2 \ln Q$ observed in the data, one calculates:

- CL_b^{obs} = fraction of background trials which are more background-like than the data
- CL_{s+b}^{obs} = fraction of signal + background trials which are more background-like than the data.
- $CL^{obs} = 1$ $CL^{obs}_{s+b}/CL^{obs}_{b}$

The signal is excluded for masses m_H where

 $CL^{obs}(m_h) > 95\%$

Advantage of this (frequentistic) method: Systematic errors can be included easily by varying the signal and background cross sections during the trial experiments

Confidence levels can also be computed from the background expectation \rightarrow expected limit

Preliminary L3 results (all channels combined)

Confidence level as function of the Higgs mass of the combined L3 results (145 pb^{-1})

Combined LEP results

About 150pb⁻¹ per Experiment

10

8

6

Expected Signal

4

2

0

()

10

0

0

4

5

3

Expected Signal

2

Combined LEP results

Log Likelihood ratio curve for the combined result as function of the Higgs mass hypothesis:

Significance of excess at 115 GeV: $3.4~\sigma$

Summary

- 170pb⁻¹ were collected and analyzed in L3 up to now in the Year 2000
- Combining all four LEP experiments, 3.4 σ excess is observed around $m_H = 115$ GeV.
- LEP got a one month's extension until beginning of November to confirm or disprove this excess
- All results are very preliminary. Final calibrations at the end of the run are needed.