Sensor Development for the CMS Pixel Project

Rolf Kaufmann University of Zurich / PSI

- ► CMS overview
- ► Semiconductor detectors
- ► CMS pixel
- ► Prototype results

The Compact Muon Solenoid (CMS)

Semiconductor Detectors

- ▶ Reverse biased, segmented p-n junction
- \blacktriangleright Separation of ionized charge in *E*-field
- Moderate bias voltage (50-300 V)
- ▶ Signal collection time $\sim 10 \, \mathrm{ns}$
- ▶ Signal charge: $1 \text{ e-h pair} \leftrightarrow 3.6 \text{ eV}$ (Silicon)
- ► Per MIP ~4fC charge $(300 \,\mu \text{m})$ ⇒ needs strong amplification

CMS Pixel Detector

Parameters of CMS Pixel Barrel:

	Configuration	Radius	Chips	Pixels	Area
		[mm]			$[m^2]$
Layer 1	low lumi	41 - 45	2304	6.35×10^6	0.15
Layer 2	low & high L	70 - 74	3840	$10.6 imes 10^6$	0.25
Layer 3	high lumi	107 - 112	5888	16.2×10^6	0.38

Special in CMS Pixel

Potential of unbonded pixel

Bump Bonding Technique

Prototype Results

- 2 test submissions in 1999 with CSEM and SINTEF, including high and low resistive silicon
 + oxygenated material
- ▶ n⁺ pixels $(150 \times 150 \,\mu \text{m}^2)$ on n-bulk $(300 \,\mu \text{m})$

Pixel isolation with open p-stop rings

- ▶ Irradiations at CERN (p) and PSI (π) up to 10⁵ Gy
- ▶ Leakage current within specifications:

▶ Pixel isolation:

 3D resistive network simulation for undepleted bulk conduction

- Pixel isolation increases with dose
- Effects of lost pixel bumps still under investigation