Doktorandenseminar ETH/Universität Zürich

4th October 2000

# Measurement of the Beauty Production Cross Section at HERA Using Lifetime Information

Jürgen Kroseberg, Universität Zürich

- Open Beauty Production in ep Scattering
- Muon Impact Parameter Analysis with H1

J. Kroseberg Measurement of b production at HERA using Lifetime Information

### Beauty Production and QCD

• high b mass provides hard scale  $\rightarrow$  expect reliable pQCD calculations

# however

 present QCD predictions have problems describing beauty production data

▷ need as much experimental input as possible

### **Tevatron Results**



ightarrow NLO QCD prediction pprox factor 2.5 below data

### **LEP** Results





 $\rightarrow b \bar{b}$  data "somewhat above" NLO QCD prediction

### **Beauty Production at HERA**

▷ proton structure

 $\rightarrow$  gluon density

▷ photon structure

 $\rightarrow$  resolve hadronic content

▷ production mechanism

 $\rightarrow$  probe hard subprocess

... but not so easy to measure:

$$\sigma_b: \sigma_c: \sigma_{uds} \approx 1:200:2000$$

### **Boson-Gluon-Fusion**



- main contribution in leading order QCD
- sensitive to gluon content of the proton
- exchange of quasi-real photons dominates  $\rightarrow$  photoproduction ( $\gamma p$ )

### Resolved $\gamma$ Processes

e.g.



- resolve hadronic structure of the photon
- only a fraction  $x_{\gamma} < 1$  of the photon momentum enters the interaction

 $(x_{\gamma} = 1 \rightarrow "direct" \text{ process, e.g. BGF})$ 

 significant resolved contribution to charm photoproduction at HERA, for beauty not clear (yet)

### **NLO Processes**

e.g.

• large contributions from NLO QCD:

▷ LO prediction:

 $\sigma \approx 3.8~{\rm nb}$ 

▷ NLO prediction (Frixione et al):  $\sigma \approx (5...10)$  nb

7

# **Semimuonic Decay**

• branching ratio  $\approx 10\%$ 

• clear experimental starting point:

 $\mu \rightarrow$  instrumented iron + central jet chambers (CJC)

 $jets \rightarrow$  calorimeter + tracking chambers



# **b** Signatures (1): Mass





For muons from b decays expect high  $p_t^{\text{rel}}$ .

 $\rightarrow$  H1 publication (first observation of open b in ep)  $\rightarrow$  by now also prelim. ZEUS results (using also e channel)

### **HERA** Results



J. Kroseberg Measurement of b production at HERA using Lifetime Information 10

# **b** Signatures (2): Lifetime

 $c\tau_{B^{\pm}} \approx 500 \,\mu\text{m} \ (\gg 0, > c\tau_{D^{\pm}} \approx 315 \,\mu\text{m} \ )$ 

Can be used in many different ways, e.g.:

• **impact parameter** techniques (see below)

 $\rightarrow$  one track (e.g. identified muon, see below)

 $\rightarrow$  several tracks (e.g. within one jet)

• secondary vertex reconstruction

• measurement of decay length  $L = p/m_b \cdot c\tau$ 

- $\rightarrow$  standard at Tevatron, LEP, . . .
- $\rightarrow$  never been done at HERA
- $\rightarrow$  possible only since installation of the H1 CST

## The H1 Central Silicon Tracker

(ETH ZH, Uni ZH, PSI, DESY, RAL, Uni Lund)



- polar acceptance:  $30^{\circ} < \theta < 150^{\circ}$
- single hit resolution:  $xy \approx 12 \,\mu \text{m}$ ,  $z \approx 25 \,\mu \text{m}$

12

## **Vertex Region of Candidate Event**



J. Kroseberg Measurement of b production at HERA using Lifetime Information 13

# Signed Impact Parameter $\delta$



#### primary particles:

- $\triangleright$  ideal:  $\delta = 0$
- $\triangleright$  finite resolution  $\rightarrow$  symmetric distribution centered at 0

#### b decay particles:

 $\triangleright$  enrichment at large positive  $\delta$ 

# $\delta$ Ingredients

### ▷ track

- require high precision in vertex region
- need efficient CST-CJC combined tracking
- $\sigma_{dca} \approx 40 \, \mu \mathrm{m} \oplus 100 \, \mu \mathrm{m} / \mathrm{p_t}$

#### $\triangleright$ event vertex (xy)

- beam spot size:  $\sigma_x pprox 150\,\mu{
  m m}$ ,  $\sigma_y pprox 30\,\mu{
  m m}$
- primary vertex fit using CST-improved tracks
- problem: avoid bias from secondary tracks
- $\sigma_x \approx 110 \,\mu\text{m}$ ,  $\sigma_y \approx 30 \,\mu\text{m}$

### ▷ jet axis

- need good reconstruction of b hadron direction  $\rightarrow \operatorname{sign}(\delta)$
- problem: for typical beauty jet (broad, low  $E_t$ ) not easy
- angular resolution  $pprox 10^\circ$

## **Event Selection**

#### selection

- muon trigger
- $\gamma p$  (no e in main detector)
- $\geq 2$  jets ( $E_t > 5 \text{GeV}$ )
- $\geq$  1 muon ( $\mu$  ID + CST/CJC track,  $p_t$  > 2GeV)

#### data sets

- 1. H1 data (1997, 15pb<sup>-1</sup>)
- 2.  $b\bar{b} \rightarrow \mu X$  Monte Carlo (LO, direct only)
- 3.  $c\bar{c} \rightarrow \mu X$  Monte Carlo
- 4. "fake muon" sample (H1 data,  $\gamma p$  trigger, no  $\mu$  ID)

 $\rightarrow$  background from misidentified hadrons

selection efficiency:

10%



### Likelihood Fit to the $\delta$ Spectrum



 $\rightarrow$  sample decomposition:

 $f_b = (26 \pm 5)\%; f_c = (24 \pm 12)\%; f_f = (50 \pm 10)\%$ 

### Cross Checks of $\delta$ Fit Result

• translate charm fraction into total  $c\bar{c}$  cross section and compare to H1 measurement of  $D^*$  photoproduction

 $\rightarrow$  consistent within (large) errors

• estimate fraction of fake muons from momentum and polar angle dependent misidentification probabilities:  $(56 \pm 6)\%$ 

 $\rightarrow$  consistent within errors with  $\delta$  fit result

• repeat measurement using  $p_t^{rel}$  method

 $\rightarrow$  good agreement with  $\delta$  fit result

smaller statistical errors (better beauty discrimination) but fake muon contribution has to be fixed

J. Kroseberg Measurement of b production at HERA using Lifetime Information 1

# $p_t^{rel}$ Fit



## $\rightarrow f_b = (27 \pm 3)\%$

(fake muon contribution fixed at  $f_f = 56\%$ )

 $\delta - p_t^{rel}$  Correlation



#### Combine separation power of both observables!

### Use $\delta$ Result on High Purity Sample



J. Kroseberg Measurement of b production at HERA using Lifetime Information 21

# Combined ( $\delta$ , $p_t^{rel}$ ) Fit

consistent picture  $\rightarrow$  go ahead with 2d fit



J. Kroseberg Measurement of b production at HERA using Lifetime Information

dominating contributions:

- modeling of tracking resolution (10%)
- modeling of hadronic final state (10%)

(use different MC, including also resolved contributions)

### further contributions:

- $\rightarrow$  detector description
- $\rightarrow$  luminosity measurement
- $\rightarrow$  . . .



### Beauty Cross Section (1)

Visible cross section for the kinematic range

 $Q^2 < 1~{
m GeV}^2$ , 0.1 < y < 0.8 $p_t(\mu) > 2~{
m GeV}$ ,  $35^\circ < heta(\mu) < 130^\circ$ 

from impact parameter fit alone:

 $\sigma_{vis}^{ep \to b\bar{b}X \to \mu X'} = [159 \pm 30 \ (stat.) \pm 29 \ (syst.)] \text{ pb}$ 

• from two dimensional ( $\delta$ ,  $p_t^{rel}$ ) fit:

$$\sigma_{vis}^{ep \to b\bar{b}X \to \mu X'} = [160 \pm 16 (stat.) \pm 29 (syst.)] \text{ pb}$$

Previously published H1 result (same kinematic range,  $p_t^{rel}$  method, different data taking period + event selection):

$$\sigma_{vis}^{ep \to b\bar{b}X \to \mu X'} = [176 \pm 16 (stat.) ^{+27}_{-17} (syst.)] \text{ pb}$$

# **Beauty Cross Section (2)**

- impact parameter measurement confirms previously published H1 result using an independent signature and data set
- result obtained from the 2d ( $\delta$ ,  $p_t^{rel}$ ) fit is consistent with published cross section within the statistical uncertainty

Combining published and new result yields

$$\sigma_{vis}^{ep \to b\bar{b}X \to \mu X'} = (170 \pm 25) \text{ pb}$$

NLO QCD prediction:

$$\sigma_{vis}^{ep \rightarrow b\bar{b}X \rightarrow \mu X'}(NLO) = (104 \pm 17) \; \mathrm{pb}$$

 $\rightarrow$  significantly below measurement

## Summary

### ▷ open beauty production at HERA

- valuable testing ground for QCD
- experimental challenge

#### ▷ cross section measurement with H1

- analysis of muon impact parameter distribution
- exploits lifetime signature
  - (for the first time at HERA)
- essential tool: vertex detector CST
- result above NLO QCD prediction

(confirming first H1 measurement)

### ▷ discrepancy between theory and experiment

– established for b production in both ep and  $p\bar{p}$  interactions

# Outlook

various possibilities to

### $\triangleright$ extend $\mu$ IP analysis

- to different kinematic range (DIS)
- to new data (1998-2000)
- to differential cross sections

### ▷ go beyond

- towards an inclusive lifetime tag

# $\rightarrow$ more fun and physics to come!