Measuring the ξ'' Michel Parameter in the Polarized Muon Decay

J. Egger, F. Foroughi, <u>X. Morelle</u>, L. Simons Paul Scherrer Institut

N. Danneberg, W.Fetscher, M. Hadri, C. Hilbes, K. Kirch, K. Koehler, J. Lang *ETH Zurich*

P. Van Hove, J.Deutsch, J. Govaerts, A. Ninane, R. Prieels Université Catholique de Louvain

P. Knowles (Fribourg), O. Naviliat (Caen)

contents of the talk

- What are our motivations?
- Which informations do we needed to trust the results?
- How does the setup look like?
- Some very crude results ...
- Conclusion

Page 3		3, 2000	October
describe the observables in the μ decay if the ν 's are	Jenerdino	vnener parameters o erved.	ו פ או <u>not obs</u>
$-1) = -0.35 \pm 0.33$ Burkard & al. Phys. Lett. 150B(1985)242.	$\operatorname{rom}\left(\frac{\xi''}{\xi\xi'}\right)$	easure of ξ'' comes t	The me
$\bullet ~\vec{P}_e(P_L,P_{T_1},P_{T_2})$	0	-0.0015 ± 0.0063	β'/A
$- I \mu(I \mu, \cos \nu)$	0	-0.0002 ± 0.0043	lpha'/A
	0	0.012 ± 0.016	η''
• $k_e(x)$	щ	0.65 ± 0.36	\mathcal{N}''
The observables are: \vec{r}	H	1.00 ± 0.04	\mathcal{N}
	1	1.005 ± 0.009	\sim
1	0	-0.007 ± 0.013	η
	0.75	0.749 ± 0.004	δ
~↓ ~↓ ~	0.75	0.7518 ± 0.0026	ϕ
$\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$	V-A	PDG value	
the μ decay:			
we study the muon decay?	Why de		
Doktorandenseminar			

A) Test of the Standard Model

The longitudinal e^+ polarization P_L coming from the μ^+ decay =

$$P_L(x, \cos \theta) = \xi' \left[1 + \frac{P_{\mu\xi} \cos \theta(2x-1)}{(3-2x) + P_{\mu\xi} \cos \theta(2x-1)} \left(\frac{\xi''}{\xi\xi'} - 1 \right) \right]$$

 P_{μ} || Muon polarization

$$\theta = Angle between the muon spin and the positron momentum $x = \frac{E_{e^+}}{E_{max}}$$$

l

If we want $\left(\frac{\xi''}{\xi\xi'}-1\right) = 0 \pm 0.005$, then we should measure $P_L(e^+) = 1 \pm 0.03$ \implies the Standard Model value is OK .

October 3, 2000

1nt 10

1.0

Page 5

 e_L μ_R

 $\frac{1}{12}$

uze:

1

0 KL

 $|g_{2L}^2$

 e_R μ_R

1

Ļ

 $g_{e_{F}}$

 $\frac{g_{RR}^{3}}{2i} < 0.066$ Ŋ

 $|g_{RR}^V| < 0.033$

4

Ы

$$\frac{\xi''}{\xi\xi'} - 1 = 4 \left[2 \frac{|g_{RL}^V|^2}{|g_{LL}^V|^2} + \frac{|g_{RR}^V|^2}{|g_{LL}^V|^2} + \frac{1}{4} \frac{|g_{RR}^S|^2}{|g_{LL}^V|^2} + 4 \frac{|g_{RL}^T|^2}{|g_{LL}^V|^2} + 2\mathcal{R} \left(\frac{g_{RL}^S}{g_{LL}^V} \frac{g_{RL}^T}{g_{LL}^V} \right) \right]$$

In V-A electoweak interaction: $g_{LL}^V = 1$, all others constants = 0.

B) Test of models behind the SM

Doktorandenseminar

Why do we trust our results

$$P_L(x, \cos \theta) = \xi' \left[1 + \frac{P_{\mu\xi} \cos \theta(2x-1)}{(3-2x) + P_{\mu\xi} \cos \theta(2x-1)} \left(\frac{\xi''}{\xi\xi'} - 1 \right) \right]$$

- Relative measurement: $\frac{P_L(P_{\mu}=.95)}{P_L(P_{\mu}=0.12)}$ with $A_{exp} = e^+$ emission asymmetry || R = $\frac{A_{exp}}{1 - A_{exp}} \left(\frac{\xi''}{\xi\xi'} - 1\right)$
- Energy dependance

- Analysis with Annihilation and Bhabha events (with opposite analysing powers).
- with A $=\frac{\sigma_{\uparrow\uparrow}-\sigma_{\uparrow\downarrow}}{\sigma_{\uparrow\uparrow}+\sigma_{\uparrow\downarrow}}$ the theoratical analysing power asymmetry
- and a $\frac{n_{\uparrow\uparrow}-n_{\uparrow\downarrow}}{n_{\uparrow\uparrow}+n_{\uparrow\downarrow}}$ the asymmetry of the measured rates,

we have:
$$P_L = \frac{a}{AP_{e^-}}$$

October 3, 2000

The experimental setup

Page 9

Doktorandenseminar

The Multi Proportional Wire Chambers

Efficiency of the chambers: chamber 0: $\sim 100\%$ chamber 1: $\sim 99.8\%$ chamber 2: $\sim 97\%$ chamber 3: $\sim 96\%$ chamber 4: $\sim 98.5\%$ Total: $\sim 91.5\%$

 \implies Asymmetry calculations are possible

The BGO's wall

Signal stability: peaks are stable within 1% on a period of two days.

The bgo's energy sum has to be bigger than 60% of the given Silicium energy

October 3, 2000

Data from the last run

Number of analysed triggers: 20309346.

 \implies We have 100 times more statistics!!!

Statistics of the last run:

		Number of triggers	
Pos.	target	$I_{foils} < 0 \mathrm{A}$	$I_{foils} > 0 \mathbf{A}$
$+45^{\circ}$	S	449997312	451675008
	Al	433657408	443233792
-45°	S	462856256	465895712
	Al	459272000	436142688

Conclusion

During the last run, we obtained:

- enough statistics,
- a good energy selection (the enhancement factor depends on the energy),
- data with different geometries and e^- polarization (systematics).

To get the final results, we will:

- check the stability of the whole apparatus,
- \bullet check the background and understand it (compare it with Monte Carlo),
- check the systematics for the different energies and geometries.

My personal conclusion: I'm quite optimistic for the future...