

Evidence for WW Spin Correlations with L3 at LEP

Radoslaw Ofierzynski, ETH-IPP / CERN

- Introduction
- Inclusive W helicity analysis
- How to measure WW spin correlations
- Data analysis
- Decay plane correlations
- Summary

$e^+e^- \rightarrow W^+W^- \rightarrow 4f$

Standard Model:

$$f\bar{f}f\bar{f} = \begin{cases} \frac{\ell\nu q\bar{q}}{q\bar{q}} & 3.14.6\% \\ q\bar{q}q\bar{q} & 45.6\% \\ \ell\nu\ell\nu & 10.6\% \end{cases}$$

Semileptonic channel:

- low background,
- only one neutrino,
- hadronic and leptonic W decays well separated,
- W[±] charge assignment from ℓ^{\pm} ,

•
$$\frac{\mathrm{BR}(\mathrm{W}^+\mathrm{W}^- \to \mathrm{e}(\mu)\nu\mathrm{q}\mathrm{\bar{q}})}{\mathrm{BR}(\mathrm{W}^+\mathrm{W}^- \to \mathrm{all})} = 29.2\%.$$

$W^+W^- \rightarrow e\nu_e q\bar{q}$ Event in the L3 Detector

Run # 696408 Event # 1935 Total Energy : 134.25 GeV

$\rm W^+W^- \rightarrow \mu \nu_\mu q \bar{q}$ Event in the L3 Detector

Run # 720712 Event # 2154 Total Energy : 136.75 GeV

R.Ofierzynski

The Longitudinally Polarized W Boson

- Massless photon \Rightarrow helicity ± 1 only transverse polarisations
- Electroweak theory: Higgs mechanism ⇒ massive W boson
- Massive W boson \Rightarrow helicity ± 1 and 0 transverse and longitudinal polarisations
- Quantum field theory: in the limit of high energy, the amplitude for producing a longitudinally polarised W is given precisely by the amplitude for producing the charged Goldstone boson associated with SU(2)×U(1) symmetry breaking.

Analysis of W $\rightarrow \ell \nu$ helicity

- extract W helicities (+1), (-1), (0)
- fit function for W $\rightarrow \ell \nu$:

$$\frac{1}{N}\frac{dN}{d\cos\theta^*} = f_-\frac{3}{8}(1+\cos\theta^*)^2 + f_+\frac{3}{8}(1-\cos\theta^*)^2 + f_0\frac{3}{4}\sin^2\theta^*$$

• fit distribution of polar decay angle \Rightarrow helicity fractions of $W \rightarrow \ell \nu$

Measurement of Longitudinally Polarized W^{\pm} Bosons(1)

- L3 note 2574, Improved Studies with Longitudinally and Transversely Polarised W[±] Bosons. (Update for 1999 data of L3 paper 195)
- Full statistics ($\sqrt{s} = 183 202 \text{ GeV}$): 1375 events of the type e⁺e⁻ \rightarrow W⁺W⁻ \rightarrow $\begin{cases} e\nu_e q\bar{q} \\ \mu\nu_\mu q\bar{q} \end{cases}$
- Background from: $e^+e^- \rightarrow q\bar{q}(\gamma)$ (1.3%), and $e^+e^- \rightarrow W^+W^- \rightarrow \tau \nu_\tau q\bar{q}$ (2.6%).

Measurement of Longitudinally Polarized W^{\pm} Bosons(2)

Corrected $\cos \theta^*$ distributions for (a) leptonic W decays and (b) for hadronic W decays

Measured W helicity fractions, combining the leptonic and hadronic W decays.

	-1	+1	0
Data	0.562 ± 0.045	0.179 ± 0.023	0.259 ± 0.035
MC	0.576	0.176	0.248
	-		

Measurement of Longitudinally Polarized W^{\pm} Bosons(3)

 Fractions of W⁻ helicities (0) and (-) as a function of the W⁻ scattering angle.

Searching for W^+W^- Spin Correlations

Angular distribution of cross section of $e^+e^- \rightarrow W^+W^-$:

Searching for W^+W^- Spin Correlations

Relative cross section contributions from particular helicity combinations (EEWW MC):

Cut on W⁻ scattering angleEnrichment of $0.3 < \cos \Theta_{W^-} < 0.9$ $(-+) \sim 63\%$ (43% average) $-0.3 < \cos \Theta_{W^-} < 0.3$ no effect expected $-0.9 < \cos \Theta_{W^-} < -0.3$ $(00) \sim 25\%$ (9% average)

- Cut on polar decay angle of W \rightarrow $q\bar{q}$
 - $(0.0, 0.33) \Rightarrow (\pm 1)$ depleted W sample
 - $(0.66, 1.0) \Rightarrow (\pm 1)$ enriched W sample

For $0.3 \le \cos \Theta_{W^-} \le 0.9$ expect: (±1) W helicity fraction varies from 75% to 90% (compared to average 80%)

• $W \rightarrow \ell \nu$: Compare / fit the resulting $\cos \theta^*$ distributions.

Event Selection

 $e^+e^- \rightarrow W^+W^- \rightarrow e(\mu)\nu q\bar{q}$

- large multiplicity events (jet events)
- isolated electrons and muons (p > 15 20 GeV)
- large missing momentum (p > 10 GeV), pointing well into detector ($|\cos \Theta_{\nu}| < 0.95$)
- mass of jets $\approx m_{\rm W}$
- mass of lepton-neutrino system $\approx m_{\rm W}$,

 $W \to \ell \nu$:

- reconstruct neutrino from missing momentum,
- boost charged lepton to W rest frame.

W→qā:

- boost all hadrons to W rest frame,
- determine thrust vector in rest frame,
- thrust vector gives direction of quark momentum vector.

Accuracy of Reconstruction

Efficiencies

in the forward scattering angle interval $(0.3 \le \cos \Theta_{W^-} \le 0.9).$

Effects of Resolution and Efficiency: Bias Correction

• Use Monte Carlo with known helicity fractions (EEWW).

- Bias correction depends on $|\cos \theta_h^*|$ slice, and slightly on fraction of other helicities.
- In each $|\cos \theta_h^*|$ slice, bias is almost linear for constant ratio of fractions of other helicities.

Data (183 – 202GeV) :	
Backward W ⁻ Scattering Angle	

	$W^- \rightarrow \ell \nu$ helicity		
$W \rightarrow$ hadrons:	-1	+1	0
± 1 depleted	24.0±9.5	34.9±13.8	41.1±19.8
± 1 enriched	6.0 ± 6.0	25.2 ± 16.3	68.8±19.2
difference Data	18.0 ± 11.2	9.7±21.4	-27.7±27.6
difference MC	3.6	-13.3	9.6

Data (183 – 202GeV) : Central W [–] Scattering Angle

	$\vee \vee \rightarrow \ell \nu$ helicity		
$W \rightarrow$ hadrons:	-1	+1	0
± 1 depleted	54.9±13.1	45.1±11.3	0.0 ± 17.9
± 1 enriched	50.5±13.0	20.2 ± 8.5	29.3±15.2
difference Data	4.4 ± 18.5	24.9 ± 14.1	-29.3±23.5
difference MC	3.5	-5.2	1.7

Data	(18)	3 – 202GeV) :
Forward	W^{-}	Scattering Angle

	$W^- \rightarrow \ell \nu$ helicity			
$W \rightarrow$ hadrons:	-1	+1	0	
± 1 depleted	26.2±12.7	16.9 ± 9.0	57.0 ± 16.1	
± 1 enriched	86.2±13.1	12.7 ± 4.1	1.1 ± 8.6	
difference Data	-60.0±18.2	4.2±9.9	55.9 ± 18.3	
difference MC	-12.0	4.9	7.0	

 $0.3 \le \cos\,\Theta_{W}^{-} \le 0.9$ 0.6 L3 preliminary W→lv DATA, $W \rightarrow q\bar{q}$ (±1) depleted 0.5 MC, W \rightarrow q \bar{q} (±1) depleted 1/N dN/d $\cos \theta_1^*$ / 0.4 DATA, $W \rightarrow q\bar{q}$ (±1) enriched 0.4 MC, $W \rightarrow q\bar{q}$ (±1) enriched 0.3 0.2 0.1 0 -1 -0.5 0.5 0 $\cos \theta_l^*$

R.Ofierzynski

Forward W⁻ Scattering Angle: Subsamples

Systematic Studies

- Variation of background: $\frac{1}{2}$ to $1\frac{1}{2}$ of nominal,
- variation of selection cuts for $m_{\ell
 u}$, $m_{{
 m q} {ar {
 m q}}}$ and $p_{{
 m miss}}$,
- variation of cuts on $W \rightarrow q\bar{q}$,
- dependence on center-of-mass energy,
- uncertainties from efficiency and bias corrections.

Result:

- no significant systematic effect found,
- systematic uncertainties $< \frac{1}{2} \times \text{statistical errors}.$

Decay Planes of W⁺ and W⁻

• Studying

 $\left|\Delta\phi^{*}
ight|=\left|\phi_{\ell}^{*}-\phi_{h}^{*}
ight|$

in the range $0^{\circ} < |\Delta \phi^*| < 90^{\circ}$.

• Fit function: $1 + D \cdot \cos(2 \cdot |\Delta \phi^*|)$

(Reference:

Duncan et al., Phys.Rev.Lett. 55, 773.)

Accuracy of Reconstruction and Efficiency

Decay Planes: Data

- uncorrelated decay: D = 0
- fit to KORALW MC: $D = -0.061 \pm 0.006$
- fit to DATA : $D = -0.062 \pm 0.040$

- $\Rightarrow |\Delta \phi^*|$ goes into expected direction, not yet statistically significant.
- \Rightarrow Include 2000 data and 4-jet final states.

Summary

- Evidence for spin correlations along W flight direction with 4 standard deviations:
 - Helicity of $W \rightarrow \ell \nu$ depends on helicity of $W \rightarrow q\bar{q}$.

 $\begin{array}{ll} 0.3 < \cos \Theta_{W^-} < 0.9 \Rightarrow \\ W^- \rightarrow \ell \nu & (-1): \\ 26.2 \pm 12.7\% & \text{with } W \rightarrow q\bar{q} \ (\pm 1) \ \text{depleted} \\ 86.2 \pm 13.1\% & \text{with } W \rightarrow q\bar{q} \ (\pm 1) \ \text{enriched} \\ -0.9 < \cos \Theta_{W^-} < -0.3 \Rightarrow \\ W^- \rightarrow \ell \nu & (-1): \\ 24.0 \pm 9.5\% & \text{with } W \rightarrow q\bar{q} \ (\pm 1) \ \text{depleted} \\ 6.0 \pm 6.0\% & \text{with } W \rightarrow q\bar{q} \ (\pm 1) \ \text{enriched} \end{array}$

- Reasonable agreement with KORALW Monte Carlo. (See some interesting deviations up to $\approx 2\sigma$)

(See some interesting deviations up to $\approx 3\sigma$)

- Spin correlations in decay planes: 1.5σ deviation from uncorrelated decay, in good agreement with KORALW MC. Preference of decay under a 90° angle.
- Results written up in L3 note 2574: Improved Studies with Longitudinally and Transversely Polarised W[±] Bosons.

Outlook

- Include this years data: some 50% or 200pb⁻¹ more data statistical gain \approx 1.2
- Include 4-jet final states (WW→qqqqq): statistical gain ≈ 1.5 However: systematics not easy.

