First Observation of long–lived $\mu p(\mathbf{2s})$

Lifetime and population of $\mu p(\mathbf{2s})$

Randolf Pohl

- Why $\mu p(2S)$?
- Measurement of the initial kinetic energies of $\mu p(1\mathsf{S})$
- First observation of $\mu p(2S)$, First observation of new quenching mechanism
- Outlook: Laser resonance experiment

Collaboration

- F.J. Hartmann¹, P. Hauser², F. Kottmann³, G. LLosá²,
 Ch. Maierl¹, V. Markushin², M. Mühlbauer¹,
 C. Petitjean², R. Pohl^{2,3}, W. Schott¹, D. Taqqu²
- ¹ Physik Department, Technische Universität München, DE-85748 Garching
 - ² Paul Scherrer Institut, CH–5232 Villigen PSI, Switzerland
 - ³ Institut für Teilchenphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland

The Proton Radius

$$\begin{array}{lll} \Delta E_{(2S-2P)} &=& 210.005(6) \ {\rm meV} - 5.166 \ {\rm meV} \ {\rm fm}^{-2} \cdot r_p^2 \\ \\ &=& 206.167(107) \ {\rm meV} \end{array} \\ \lambda = \frac{hc}{\Delta E} &\sim& 6.02 \ \mu {\rm m} \end{array}$$

PhD 2000

Initial $\mu p(2S)$ population

The relative population ϵ_{2S} of the metastable 2S–state can be calculated from the measured K–line intensity ratios:

$$\epsilon_{2S} = 0.134 \frac{I(K_{\beta})}{I(K_{tot})} + 0.144 \frac{I(K_{>\beta})}{I(K_{tot})}$$

October 4, 2000

-
$$\mu p(2\mathsf{S})$$
 in vacuum: $\tau \cong au_{\mu} = 2.2 \ \mu \mathrm{s}$

– $\mu p(2S)$ in H_2 gas: collisional quenching

$$egin{array}{rcl} \mu p(2S) &+& \mathrm{H}_2 &
ightarrow & \mu p(2P) &+& \mathrm{H}_2 \ && \Downarrow & & \ && \downarrow & & \ && \mu p(1S) &+& K_lpha ext{ at 2 keV} \end{array}$$

Energy threshold: $\Delta E^{lab}(2S \rightarrow 2P) = 0.31 \text{ eV}$ Long-lived $\mu p(2S)$ population: $\tau \ge 1 \ \mu s$.

October 4, 2000

$\neg \neg \neg \mu p$ time-of-flight measurement

Stop muons on axis of cylindrical H_2 gas target Time spectrum of μp arrival at walls (μAu) Monte Carlo simulations for single initial E_{kin} Fit weights to measured spectra \Rightarrow Initial kinetic energy distributions

$\neg \neg \neg \mu p$ time-of-flight measurement II

 \sim Kinetic Energy of μp atoms

(1) 20 and 58 mm target diameter, (2) 7 and 12 mm target diameter.

[1] T. Jensen and V.E. Markushin, PSI-PR-99-32, nucl-th/0001009.

[2] H. Anderhub et al., Phys. Lett 143B (1984) 65.

 $\neg \neg \neg \neg$ Direct observation of $\mu p(2s)$

Early times: Fast $\mu p(1s)$ with $E_{kin} \sim 1 \text{ keV}$

Origin: $\mu p(2s)$ are quenched via the resonant process

P.Froelich and A.Flores-Riveros, Phys. Rev. Lett. 70, 1595 (1993)

<u>Lifetime</u> of $\mu p(2s)$ shortened, proportional to pressure.

October 4, 2000

 $\neg \neg \neg \neg$ Lifetime of μp (2s) vs. pressure

October 4, 2000

 μp (2s) quenching mechanism

- Previously believed: $E_{kin}(\mu p(2s)) \le 0.31$ eV: radiative quenching (slow), only during a collision
- Well-known for $\mu p(1s)$: Vesman mechanism:

 $\mu p(1s) + H_2 \rightarrow \{ [(pp\mu)^+]^* pee \}^*$

E.A.Vesman, *Pis ma Zh. Eksp. Teor. Fiz.* **5**, 113 (1967) [*JETP Lett.* **5**, 91 (1967)]

- Now: Resonant molecule formation also for $\mu p(2s)$
 - Weakly bound states close to $\mu p(n=2)$ \Rightarrow excess energy efficiently absorbed by rotational/ vibrational motion of molecule
 - Final state is in continuum above dissociation limit $\mu p(n=1) + p \Rightarrow$ fast autodissociation
 - S.Hara, T.Ishihara, Phys. Rev. A40, 4232 (1989)
 - I.Shimamura, Phys. Rev. A40, 4863 (1989)
 - P.Froelich, A.Flores-Riveros, Phys. Rev. Lett. 70, 1595 (1993)
 - P.Froelich, J.Wallenius, Phys. Rev. Lett. 75, 2108 (1995)
 - J.Wallenius, P.Froelich, Phys. Rev. A54, 1171 (1996)
 - S.Jonsell, J.Wallenius, P.Froelich, Phys. Rev. A59, 3440 (1999)

Conclusions

- 1^{st} direct observation of metastable $\mu p(2s)$
- 1^{st} direct evidence for new cascade process

$$\begin{array}{rcl} \mu p(2s) + \mathrm{H}_2 & \to & \{ [(pp\mu)^+]^* & pee \}^* \\ & & & \downarrow \\ & & \mu p(1s) + p & + \ldots + 2 \ \mathrm{keV} \end{array}$$

- consistent results on 2s population from
 - * Low–energy part of $\mu p(1s)$ kinetic energy distribution and '2s survival probability'
 - * High–energy component from $\mu p(2s)$ quenched via resonant molecule formation with H₂
- 2s population (~ 1.5%) and lifetime (~ 1 μ s at low pressure) suitable for laser experiment.
- Technical developments underway, laser experiment to start next year.

Outlook

- Availability of long-lived metastable $\mu p(2S)$ First direct observation!
- Technical advances in muon beam: higher μ^- stop rate in a small volume of a few mbar H_2 Test run with electrons in June 2000: works. First pion/muon beam in Nov. 2000.
- 2 keV X-ray detector: MSGC based GPSC available
 Prototype # 1 tested in 5 Tesla field: works.
 # 2 waiting for muonic K-x-rays (Nov. 2000)
 Improved prototype # 3 under construction.
- Laser: all components realized already Dye laser under construction at PSI. Ti:Sa constructed in Paris: works. Raman cell on its way to Paris.
- Experiment to start in 2001:
 - \diamond measure ΔE (2 S $_{1/2}(F{=}1)$ 2 P $_{3/2}(F{=}2)$)
 - ◊ event rate : 9 per hour on resonance
 - \diamond split line to 1/10
 - \diamond proton radius to 10^{-3}

 \frown Calculation of $\Delta E_{2S-2P}(\mu p)$

Contribution	Value (in meV)
Leading order VP	205.006
Relativistic correction to VP	0.059
Double VP	0.151
Two-loop VP	1.508
Three–loop VP	0.008
Hadronic VP	0.011
Muon self-energy and VP	-0.668
Muon self–energy with electron VP	-0.006
Recoil of order $lpha^4$	0.057
Recoil of order $lpha^5$	-0.045
Proton self energy	-0.010
VP with finite size	-0.021
Nuclear polarization	0.017(4)
$2S$ hyperfine structure: $-1/4 \cdot [22.745(15)]$	-5.686(4)
$2P_{3/2}$ hyperfine structure: $3.393\cdot 3/8$	1.272
Fine structure	8.352
Lamb shift without r_p contribution	210.005(6)
Finite size effect $-5.166 \cdot r_p^2$	-3.838(107)
Total Lamb shift	206.167(107)

(values for the transition 2 $\mathsf{S}_{1/2}(\mathsf{F}{=}1)$ – 2 $\mathsf{P}_{3/2}(\mathsf{F}{=}2)$)

Finite size effect:
$$E = \frac{1}{12} \mu^3 \alpha^4 \langle r_p \rangle^2$$