

Preliminary results from the L3+C experiment at CERN

Renzo Ramelli ETH Zurich/CERN

Doktorandenseminar Zurich October 2000

Outline:

- The L3+C Experiment
- The muon spectrometer
- The air shower array
- Preliminary results:
 - Vertical muon momentum spectrum
 - Charge ratio
 - Sideral anisotropy
- Conclusion

L3+C Experiment

At LEP accelerator, CERN 6.02°E, 46.25°N. altitude:450m

air shower array

muon spectrometer (L3 detector) (under 30 m of molasse)

GOALS

- Measurement of the momentum spectrum including angular distribution and charge ratio (Normalization of the atm. muonic neutrino flux above 20 GeV).
- Primary composition at the knee region via µmomentum distributions in multi-muon events combined with the estimated measured primary energy of the cosmic air shower array.
- Time variations (pressure, temperature).
- Anisotropy and point sources (GRB's)
- Exotic Events
- Moon shadow
- Solar flares

(On the original transparent this photo fills the full page)

The μ -spectrometer (L3)

- Acceptance : up to 200 m²sr
- Threshold : $E_{\mu} > 15 \text{ GeV}$
- Mom.resol. (at L3 level):

 $\Delta p / p = 4.4$ % at 50 GeV/c

- Ang. Resol.: $\delta < 3.5$ mrad above 100 GeV (from multiple scattering in the rock)
- Systematic errors (absolute flux): ~ 2.5 % (Goal)
- GPS timing
- Trigger and DAQ indep. of L3

Summary of Data–Taking

- Period: May–November 1999 and April November 2000
- Trigger rate: ~ 450 Hz
- ◆ **#** Events: **11**•**10**⁹ (by November)
- Total eff. runtime: 306 days
- # processed Event (up to now): $8 \cdot 10^9$ (5'000 CPU days)
- ♦ # reconstructed Events: 2.5 •10⁹

Monte Carlo:

(Mainly on Asgard cluster at ETH)

- # generated events: 2.5.10⁹(with last program version)
- # reconstructed events: **0.3**•**10**⁹(5'000 CPU days)

Momentum resolution at 45.6 GeV

 $e^+e^- \rightarrow Z^0 \rightarrow \mu^+\mu^-$

2000

Efficency also checked via Z^0 analysis!

Momentum resolution

2nd Method:

• Determined with weighted average using the upper and a lower half of a track

$$\Delta\left(\frac{1}{p}\right) = \left(\frac{1}{p}\right) \cdot \left(\frac{\Delta p}{p}\right)$$

2 octant resolution at 50 GeV

The two methods are in **agreement**!

(On the original transparent this photo fills the full page)

Air shower array

- Operational since April 2000
- 50 scintillators of 0.5 m² each
- Covered area: 30 m x 54 m
- E-threshold: 10 TeV
- Shower rate: 1.7 Hz
- # Events: > 30 million
- 30% of showers associated with muon in L3.
- > 10^{15} eV \rightarrow 25 events/day (2.5 with core above array)
- $\Delta E / E \rightarrow 30 \%$ (when core above array)
- $\Delta \theta$ of shower axis: above 30 TeV 1° at E-threshold 2°
- GPS timing

Event example

Multiplicity distribution in shower array

Roughly: N particles in the array \rightarrow shower energy $\sim N \text{ TeV}$

Vertical momentum spectrum

- used livetime: 30 days (1999)
- 'golden' muons only: passing upper and lower octant
- zenith angle $< 10^{\circ}$
- momenta 50 GeV-500 GeV

 \rightarrow ~50000 events

Vertical momentum spectrum Flux $\times p^3$

Systematic error dominant. Now: 9%. Goal:2.5%

Systematic Uncertainties Normalization

Status and Goals

Vertical spectrum, near 100 GeV, relative Errors:

(Period: Sep. 1999–Nov. 1999)

Source	error now	final error
trigger eff.	0.5%	0.5 %
scintill. eff.	1 %	0.3 %
P chamber eff.	6 %	1 %
Z chamber eff.	1 %	0.5 %
reconstr.eff. and backtrack.correct.	6 %	2 %
momentum resolution	3 %	0.5 %
pressure / temperature correct.	1 %	0.3 %
Noise (LEP, electronics)	3 %	0.3 %
TOTAL	9%	2.5 %

(Status in May 2000: Error was still 19%)

Charge ratio for vertical muons

Zenith angle $< 10^{\circ}$

Error: systematic + statistics (only 30 days)

Multimuon Event

~ 200 events per day with multiplicity >10

Look at Sideral anisotropy

1. Point sources: search of neutral particles (γ -rays,?) in given direction.

2. Large scale anisotropies:

studied with full sky harmonic analysis.

Propagation of charged particles is governed by magnetic fields

• Galactic magnetic field: ~ $2 \mu G$

(Larmor radius for 1TeV: particle $4 \cdot 10^{-4}$ pc)

- Solar magnetosphere: influence on anisotropy measurements is important for E < ~ 1TeV
- \rightarrow Structure of magnetic field influence anisotropy

Other factors which influence large scale anisotropy:

- ◆ Distribution of sources concentreted in the galactic disk.
 → anisotropy gives informations about origin of CRs.
- Motion of observer with respect to the CRs sources (Compton–Getting Effect):

$$E' = \frac{E}{1 - \beta \cos(\vartheta)} \qquad f' = \frac{f}{(1 - \beta \cos(\vartheta))^{2.7}}$$

Example: Earth's orbital vel.: 30 km/s $\rightarrow \Delta$ (f'/f) = 0.03 %(seasonal effect)

The anisotropy of the primary CRs can be measured with cosmic ray muons.

Many μ -underground experiments reported about anisotropy (**Primary E-range:** $10^{11} \text{ eV} - 10^{14} \text{ eV}$) Order of magnitude: 0.05%

E.g. Kamiokande Experiment reported about an anisotropy of this order in the RA distribution with a 2.8 standard deviation

Phys. Rev. D 56, 23 (1997).

1.005 Relative muon rate Kamiokande data 1.004 best fit : R(α)=1+0.00056 cos(α -8.0°) 1.003 Used data: 1.002 Kamiok. II: Jan '87– Dec '89 1.001 +1.000 Kamiok III: Jan '91– Dec '94 0.999 0.998 0.997 0.996 0.995 270 315 360 45 90 135 180 225 right ascension (deg) First harmonic: Amplitude: $(5.6 \pm 1.9) \cdot 10^{-4}$ Phase: $8.0^{\circ} \pm 19.1^{\circ}$

Kamiokande II+III measurement

1

Measured magnitude of anisotropy is somewhat larger for **higher Energies** (see EAS array measurement).

Compare Kamiokande II+III with L3+C

	Kamiokande	L3+C
Livetime	$179 \cdot 10^6$ s	$26 \cdot 10^6$ s
Average rate of selected muons	0.33 Hz	~ 50 Hz
# muon events	$58 \cdot 10^6$	~ $1'000 \cdot 10^{6}$

L3+C has a very high statistics and in principle should be able to get a good measurement of the sideral anisotropy of CR's.

METHOD

Local Equatorial coordinates

Example: (1st trial)

- 2'205 "good" runs from 14 Sep –9 Nov '99.
- 32.7 Million Events with Energy > 30 GeV.

Sideral Time Distribution (corrected for livetime)

Hour Angle Distribution (= R.A. – Sideral Time)

Convolution of the 2 previous distributions give Expected Right Ascension Distribution

Compare with Measured Right Ascension Distribution

Measured RA distrib.

-1

Expected RA distrib.

Fit with the first harmonic

Need to be done:

- Different period of analysis to take into account hardware interventions and changes
- Correct for the influence of the pressure and temperature on the flux of CR's
- ◆ Separate daily and seasonal variation of the CR's flux from sideral anisotropy → Unfortunately no data in the winter period (15 Nov – 30 Mar)
- Influence of different event selection.
- Error calculation

Percentage of good μ -chamber cells according to database

Conclusion

- The vertical muon spectrum and charge ratio have been measured up to now with a precision of about 10%.
- A final precision of less than 3 % is expected.
- The measurement will be extended to larger zenith angles and momentum range (20– 2000 GeV)
- Combining the primary and muon energy provides a unique opportunity to study cosmic rays.
- Sideral anisotropy analysis started.