A Triple GEM detector for the LHCb inner tracker

Universität Zürich Physik institut Marcus Ziegler

Principle of gas detectors

-> gas molecules in the active detector volume are ionized by incomming particles

- The Geiger-Müller Counter, first described in 1928, can be considered as the basis of gas detectors
- 1968 Multi Wire Proportional Chamber (MWPC), plane of parallel anode wires

1988 Micro Strip Gas Chamber (MSGC)

Works only with x-rays

In a hadronic beam high ionising particles produce discharges => damage of the MSGC substrate

1997 Gas Electron Multiplier (GEM)

Single electron avalanches in the LHCb GEM

Applications with GEMs

The Triple GEM Detector

A cascaded setup of GEMs leads to higher gas gain before discharges start

<= discharge probability for Double and Triple GEM detectors under irradiation with α -particles

Amplification factor in each GEM ~ 20 @ $U_{GEM} = 360V \Rightarrow$ gain 10 000

Charge sharing between upper and lower strips

<= charge sharing ~ 1:1

Distance between GEMs

- → large gaps between GEMs => cluster size increases
- → small gaps between GEMs => danger of contact between GEMs

1st prototype (April '99) 3 mm gap between GEMs

2nd prototype equiped with cylinders glued on special places on GEM

Segmentated GEM

one GEM side is dividet into 10 segments

- less energy in a discharge (reduced capacity)
- less chance to destroy the GEM
- in case of a short only a part of the detector is lost

Detector at the testbeam

Setup at the PSI (Paul Scherer Institut, Switzerland)

readout 2 x 500 channels per detector

Active area of the detector: 23 cm x 30 cm

Gain and spark probability

sparkprobability measured with a $\pi^{\!+}\,350$ MeV/c beam

total rate of 50 MHz

Landau distribution

Efficiency curve

Clustersize

Expected cluster width:

 $\begin{array}{ll} \mathsf{D}_t &= 300 \mu \text{m} \, / \, \text{sqr(cm)} \\ \mathsf{S}_{expected} &= 200 \mu \text{m} \\ \mathsf{S}_{measured} &= 240 \mu \text{m} \end{array}$

Large angle tracks

=> Large angle tracks create big clusters

Gain homogenity

At outer part of the detector a gas gain drop was observed

=> maybe misalignement of the GEM holes

Hitmap reconstructed from cosmic rays

Full size prototype

Two L-shape detectors to cover the Inner Tracker area around the beampipe

New features:

finer segmentation two dimensional readout with "Zig-Zag" geometry Beetle readout is intended

=> Detector will be ready in December 2000