Exploiting the Weak Boson Fusion at LHC

- Measuring Higgs couplings at LHC
- Weak Boson Fusion in the $qq \rightarrow qqH \rightarrow qqWW$ search
- Selection: Forward Jet Tagging, lepton isolation...
- No Higgs scenario? Strongly interacting Vector Bosons!
- Conclusions and Outlook

Measuring Higgs boson couplings at LHC

- Main goal: assure Higgs discovery for the entire mass range
- \Rightarrow Find the observable modes which have the maximal $\sigma \times$ BR within the different mass regions.

For a SM scenario:

\Rightarrow First studies to optimize the visibility of the signal

Required Luminosity for a 5 σ Higgs discovery (SM):

Well known:

only few accessible search channels for any given boson mass. Possible scenarios, depending on m_H :

 $pp \rightarrow H \rightarrow \gamma\gamma$ $\mathbf{m}_H \lesssim \mathbf{150} \ \mathbf{GeV}$ $pp \rightarrow H \rightarrow ZZ^* \rightarrow 4l$ $\mathbf{m}_H \gtrsim \mathbf{130} \ \mathbf{GeV}$ $pp \rightarrow H \rightarrow WW^* \rightarrow l\bar{\nu}\bar{l}\nu$ $\mathbf{m}_H \gtrsim \mathbf{150} \ \mathbf{GeV}$ $pp \rightarrow H \rightarrow WW^* \rightarrow l\bar{\nu}q\bar{q}$ $\mathbf{m}_H \gtrsim \mathbf{300} \ \mathbf{GeV}$

Dario Zürcher, PSI / ETH Zürich, Doktorandenseminar, Oct. 5th 2000

► What's next?

Systematic investigation of Higgs boson properties!

 \Rightarrow Determination of the couplings to fermions and gauge bosons:

Higgs Production Modes at LHC:

Dario Zürcher, PSI / ETH Zürich, Doktorandenseminar , Oct. 5th 2000

Z. Kunszt, S. Moretti, W.J. Stirling: *Higgs Production at the LHC*

(Published in Z.Phys.C74:479-491,1997)

Fig. 5b

NOW (1999):

New studies show: Weak Boson Fusion is a promising Higgs production channel also in the intermediate mass range!!

 $\begin{array}{ll} qq \to qqH \to jj\gamma\gamma & \mathbf{m}_{H} \lesssim \mathbf{150} \, \mathbf{GeV} \\ qq \to qqH \to jj\tau\tau & \mathbf{m}_{H} \lesssim \mathbf{140} \, \mathbf{GeV} \\ qq \to qqH \to qqWW^{*} \to jje^{\pm}\mu^{\mp} \not p_{T} & \mathbf{m}_{H} \gtrsim \mathbf{120} \, \mathbf{GeV} \end{array}$

- ⇒ Possibility to observe several Higgs production and decay channels, over the entire intermediate mass range
- ⇒ Informations about Higgs couplings to bosons and fermions (ratios of different production channels with same decays):

$$\frac{\sigma_{f\bar{f}\to H}}{\sigma_{VV\to H}} \sim \frac{\sigma_{gg\to H\to WW\to l\nu l\nu}}{\sigma_{qq\to H\to WW\to l\nu l\nu}}$$

More precisely:

$$\Gamma_f = \Gamma(H \to \bar{f}f) = c_f \frac{g_{Hff}^2}{8\pi} \left(1 - \frac{4m_f^2}{m_H^2}\right)^{3/2} m_H$$

Ratios of Partial widths \Rightarrow **ratios of couplings**

$$\frac{\Delta\sigma}{\sigma}(qq \to qqH) \cdot \mathbf{BR}(H \to WW, ZZ, \gamma\gamma) \\ \frac{\Delta\sigma}{\sigma}(gg \to H) \cdot \mathbf{BR}(H \to WW, ZZ, \gamma\gamma) \\ \end{bmatrix} \begin{array}{c} \mathbf{Statistical Error:} \\ \mathbf{2 - 15 \%} \\ \mathbf{(200 \ fb^{-1}, m_H = 100\text{-}200 \ GeV)} \end{array}$$

How can we translate: MEASURED $\sigma_H \hookrightarrow$ HIGGS COUPLINGS ?

Partial Widths: $\Gamma_{f} \equiv \Gamma(H \to \bar{f}f) = c_{f} \frac{g_{Hff}^{2}}{8\pi} \left(1 - \frac{4m_{f}^{2}}{m_{H}^{2}}\right)^{3/2} m_{H}$ $\left[\Gamma_{g} \equiv \Gamma(H \to gg) \cong \Gamma(H \to \bar{t}t)$

Production σ_{H} :

 $\sigma(gg \to H) = \Gamma_g \, \frac{\pi^2}{8m_H^3} \tau \int_{\tau}^1 \frac{dx}{x} g(x, m_H^2) g(\frac{\tau}{x}, m_H^2) \quad \tau = \frac{m_H^2}{s}$

to be multiplied with the branching fractions for final state j:

BR $(H \to j) = \frac{\Gamma_j}{\Gamma}$ [$\Gamma \equiv \text{total Higgs width}$]

 \Rightarrow Cross Section measurement $\sim \frac{\Gamma_i \Gamma_j}{\Gamma}$

Theoretical uncertainties $\begin{cases} \frac{\Delta\sigma}{\sigma} (gg \to H)^{NLO} &\sim 20\%\\ \frac{\Delta\sigma}{\sigma} (qq \to qqH)^{NLO} &\sim 5\% \end{cases}$

 \Rightarrow Take Ratios! \Rightarrow QCD, PDF, Luminosity uncertainties cancel!

$qq \to qqH \to jjW^{(*)}W^{(*)} \to jjl^{\pm}l^{\mp} \not\!\!p_T$

"Observing $H \to W^{(*)}W^{(*)} \to e^{\pm}\mu^{\mp} \not p_T$ in weak boson fusion with dual forward jet tagging at the CERN LHC", D. Rainwater, D. Zeppenfeld *Phys.Rev.* D60 (1999)

Weak Boson Fusion: main features

- Two very energetic forward jets
- Color coherence between initial and final state quarks
 - ⇒ Suppressed hadron production in the central region

⇒ Should allow a large suppression of background processes

Goal of this new analysis ($m_H = 160 \text{ GeV}$): check the parton-level analysis of Rainwater & Zeppenfeld at Pythia-level (with detector acceptance)

Forward Jets Reconstruction Lepton Isolation

► Tau Rejection

...

Possible Backgrounds?

Process	Comments			
$t\bar{t} \rightarrow WWb\bar{b}$	large σ (BB(t \rightarrow Wb) $\sim 100\%$)			
QCD WW + jj	Not included in Pythia!			
QED WW + jj	Kinematically similar to the signal			
$ auar{ au}jj$	Tau rejection?			

Jet reconstruction

► $p_T^{jets} > 20$ GeV, $|\eta_{jets}| < 4.5$

- ► Only "detectable" particles are selected: $|\eta| < 4.5, p_T > 0.5 \text{ GeV}$
- ► Jets are reconstructed within a cone of R<0.6, starting from the particle (p_T > 5 GeV) with more "neighbours"
- Jets/Taus are selected/rejected depending on the energy shape, charge multiplicity

Dario Zürcher, PSI / ETH Zürich, Doktorandenseminar, Oct. 5th 2000

Lepton Isolation

- ► Only leptons with $|\eta| < 2.5, p_T > 20$ GeV
- No other particle (except other leptons) close to the candidate
- $\blacktriangleright m_{\rm cone} < 2 \, {\rm GeV}$
- $\triangleright E_l > 90\% \cdot E_{tot}$ in a cone with $\mathbf{R} < 0.5$

Dario Zürcher, PSI / ETH Zürich, Doktorandenseminar, Oct. 5th 2000

Jet-Lepton & Jet-Jet separation

►QCD WWjj:

weak boson bremsstrahlung occurs at small angles relative to parent quarks

 $\Rightarrow \eta_{j,min} + 0.7 < \eta_{l_{1,2}} < \eta_{j,max} - 0.7$, $\eta_{j_1} \cdot \eta_{j_2} < 0$

► Wide separation between tagging jets:

$$\Rightarrow \Delta \eta_{tags} = |\eta_{j_1} - \eta_{j_2}| \ge 4.4$$

Suppress most of the tt-background by vetoing events with other jets between the tagging ones

- **Dominance of low-***x* **gluons within the protons**
 - \Rightarrow QCD processes occur at smaller invarant masses than EW processes
 - \Rightarrow Lower bound on m_{jj}: $m_{jj} > 650$ GeV

D. Rainwater, D. Zeppenfeld, Phys. Rev. D60 (1999)

Dario Zürcher, PSI / ETH Zürich, Doktorandenseminar, Oct. 5th 2000

Dario Zürcher, PSI / ETH Zürich, Doktorandenseminar, Oct. 5th 2000

 $\Rightarrow \textbf{large } \tau \textbf{ boost} \\ \Rightarrow \tau \textbf{ decay products nearly collinear}$

Fractions of τ energy carried by each lepton:

$x_{ au_1}$:	—	$p_x^{l_1} \cdot p_y^{l_2} - p_x^{l_2} \cdot p_y^{l_1}$		<i>m</i> –	_	$p_x^{l_2} \cdot p_y^{l_1} - p_x^{l_1} \cdot p_y^{l_2}$
		$\overline{p_y^{jets}} \cdot p_x^{l_2} - p_x^{jets} \cdot p_y^{l_2}$,	, x_{τ_2} –	_	$\overline{p_y^{jets}} \cdot p_x^{l_1} - p_x^{jets} \cdot p_y^{l_1}$

Real τ decays: $\not p_T$ vector lies between the 2 leptons \Rightarrow reconstruction yields $0 < x_{\tau_1}, x_{\tau_2} < 1$

 \Rightarrow Suppress background by vetoing events with: $x_{\tau_1}, x_{\tau_2} > 0$, $m_Z - 25~{\rm GeV} < m_{\tau\tau} < m_Z + 25~{\rm GeV}$

Signal rates

	Rainwater & Zeppenfeld	Pythia (Parton Level)	Pythia (Full showering)	$t\bar{t} + jets$ Background
	(10)	(10)	(10)	(10)
$\sigma_{ imes ext{BR}}$	~ 125	140.4	140.4	-
$\begin{array}{c} 2 \text{ Isolated} \\ \text{leptons } + \\ \geq 2 \text{ jets} \end{array}$	-	-	65	-
forward tagging	17.1	16.8	7.7	1080
m_{jj} and angular cuts (V-A)	11.8	11.7	4.9	5.5
real τ rejection	11.4	11.3	4.6	5.1
tag ID efficiency +no minijet	7.5	-	-	1.1

Expected events and significance for 5 fb^{-1} :

m_H (GeV)	130	160	180	200
N _{events}	8.8	37.5	29.9	16.3
σ_{Gauss}	2.6	9.0	7.5	4.5

Dario Zürcher, PSI / ETH Zürich, Doktorandenseminar , Oct. 5th 2000

Higher masses regions: Strongly Interacting Vector Bosons?

- ► No light Higgs found?
 - \Rightarrow Something should happen before the \sim TeV scale (Unitarity!)
- Longitudinally polarized Weak Bosons are a direct consequence of the Higgs Mechanism
 - $\Rightarrow If m_H \gg 2m_W : V_L V_L \text{ scattering becomes strong!}$ $(H \rightarrow V_L V_L \text{ dominates over } H \rightarrow V_T V_T)$
- ► Any deviation from the predicted SM cross section
 - ⇒ important informations on the nature of symmetry breaking and new physics! (if the Higgs particle is not found)

\Rightarrow Exploit the Forward Jet Tagging!

- (a) SM scenario with light Higgs (m_H =170 GeV)
- (b) non Higgs scenario (resonant) [Dobado, Herrero, Terron]
- (c) non Higgs scenario (non-resonant) [Dobado, Herrero et al.]

SUMMARY AND OUTLOOK

• After Higgs discovery:

Weak Boson Fusion will provide new channels for the study of the Higgs couplings

• Particularily:

the qqH with $H \rightarrow WW \rightarrow e^{\pm}\mu^{\mp} \not p_T$, for m_H =130-200 GeV, has a virtually background-free environement, thanks to the powerful suppression allowed by the very energetic forward jets

• The ability to measure strong WW scattering confers a no-loose capability to establish mass scale and strenght of symmetry breaking