Entwicklung von Strahlenharten Pixel Sensoren für das CMS Experiment

Rolf Kaufmann

C. Amsler¹, G. Bolla⁴, D. Bortoletto⁴, B. Gobbi⁵, B. Henrich³, R. Horisberger², R. Kaufmann¹, C. Rott⁴, T. Rohe², A. Roy⁴, L. Tauscher³

¹ Universität Zürich ³ Universität Basel

- ² Paul Scherrer Institut
- ^④ Purdue University, USA
- [®] Northwestern University, USA
- > Das CMS Experiment
- > Problematik der hohen Teilchenspurdichte
- > Strahlenschäden in Silizium
- > Prototypen
- > Pixel Isolierung
- > Pixel Kapazität
- > Ladungssteilung (Lorentz-Effekt)
- Schlussfolgerungen

26.8-10⁶ Pixelzellen

Das Problem Zum Beispiel Higgs Suche (m_H = 150 GeV/c²): WQ(pp \rightarrow H \rightarrow ZZ \rightarrow 4l) / WQ_{tot} \approx 1 / 10¹³ o [barn] Rate [Hz] 10⁰ 10⁻³ 10⁶ 10⁻⁹ 10⁻¹² 10⁻¹² 10⁻¹⁵ 10⁻⁶ H \rightarrow ZZ \rightarrow 4l H $\stackrel{Z}{\rightarrow}$ $\stackrel{Q}{\rightarrow}$ H

Ein Heuhaufen \rightarrow ~50 m^3

Eine Nadel $\rightarrow \sim 5 \text{ mm}^3$

\Rightarrow Finde eine Nadel in 1000 Heuhaufen!

konkret:

1 "Bunch Crossing" mit einem simulierten Higgs Ereignis pp \rightarrow H \rightarrow ZZ \rightarrow 4µ plus 18 überlagerte "Minimum Bias" Ereignisse (alle 25 ns)

Finde die vier Müonen-Spuren

Die Lösung

Selektiere Spuren mit Transversalimpuls $p_{T} \ge 2$ GeV/c \rightarrow vier gerade μ -Spuren deutlich sichtbar (gelb)

- ⇒ Innerste Detektorlagen so nahe als möglich beim Vertex
- ⇒ Pixel Detektor wegen hoher Hitmultiplizität (Vermeidung von Mehrdeutigkeiten in der Spurrekonstruktion)

Schnelle Auslese: Bunch-Crossing Zeit 25 ns
Hohe radioaktive Strahlenbelastung

Strahlenschäden

Hohe Dosis: 10⁵ Gy (integriert) LD₅₀ Wert für Menschen: ~ 3 Gy Weltraumanwendungen: ~ 100 Gy

Oberfläche Positive Oxyd-Ladungen ⇒ Elektronen-Akkumulationsschicht ⇒ Änderung der Oberlächenleitfähigkeit

Isolation der Pixel mit P-Stop Implantaten zwischen den Pixelzellen