Viele Korrelierte Probleme

Untersuchte Themen, jeweils als Funktion der Strahlendosis und des Pixel-Designs:

Prototypen

- Masken Design
 Produktion extern (2 Lieferanten/Prozesse)
- Entwicklung von Messmethoden
- > Bestrahlungen am CERN (p) und am PSI (π)
- Messungen und Simulationen

Dicke: 267 - 329 μ m $\rho = 1.5 (2.5) k\Omega$ cm N_D = 3.2 (1.5) $\cdot 10^{12}$ cm⁻³ Standard und Oxyd-Angereichertes Silizium

Verwendungszweck
Bondbar auf Prototyp Auslesechip
Tests auf der "Probe-Station"
Messung der Pixel Kapazität
Hochspannungsstabilität
Oxyd-Ladung und "Interface Traps"
Bau von Mini-Modulen
Vorgesehene Auslesechip-Grösse

Hochspannungsfestigkeit

"Multi-Guard-Rings" für möglichst kleine Potential-Gradienten

Pixel Isolierung

Nucl. Instr. Meth. Phys. Res. A (in print)

- n⁺ Pixel in n-Silizium
 e- Akkumulationsschicht
 nach Bestrahlung
- ⇒ Pixel Isolation mit p-Stop SiO_2 [SiO_2] [SiO_2]
- Pixel mit fehlendem Kontakt zum Chip laden sich auf, spontane Entladungen (beobachtet!)

P-Stop

Implantate

Pixe

- ⇒ Isolation gezielt brechen durch Öffnen der p-Stop Ringe, um kontrolliertes Abliessen der Ladung zu ermöglichen
- \Rightarrow "Atoll p-Stops"

 $R_{min} = t_{int} / C_{pixel} = 25 \text{ ns} / 25 \text{ fF} = 1M\Omega$ $R_{max} = ???$ (keine spontanen Entaldungen)

Messungen an unbestrahlten Pixelzellen

MOS Messungen

MOS - "Metal on Silicon" - Kapazität zur Bestimmung von Oxyd-Ladungen (und Interface Traps) durch Messung der Flachband-Spannung ΔV_{FB}

 \Rightarrow CSEM hat viel höhere Oxyd-Ladungs-Dichte als SINTEF \Rightarrow Höhere Akkumulations-Schicht Konzentration bei CSEM

Messungen nach Bestrahlung

Reduziert die e⁻ Akkumulation an der Grenzfläche den Inter-Pixel Widerstand R?

Trotz sehr hohem Inter-Pixel Widerstand R nach 6-10¹⁴ π cm⁻² keine spontanen Entladungen beobachtet \Rightarrow Atoll p-Stop Ringe funktionieren

* Fluenz: zeitintegrierter Fluss

SINTEF 7888SR oxygenated

RK

Spontane Entladungen wegen hohem **Inter-Pixel Widerstand?**

Ladungs-Teilung im B-Feld

Nucl. Instr. Meth. Phys. Res. A (in print)

Verbesserte Ortsauflösung σ

ohne B-Feld: σ = Abstand / $\sqrt{12} \approx 40 \ \mu m$ mit B-Feld: Schwerpunktsberechnung $\Rightarrow \sigma$ = $\approx 15 \ \mu m$

Benötigt genaue Spurmessung \Rightarrow Strahlteleskop mit σ =1µm

bestrahlt (3T): $(6.2\pm3.0)^{\circ} \leq \Theta_{L} \leq (26.8\pm3.6)^{\circ}$

Simulationen: kleinerer Θ_{L} (flache Steigung) verursacht durch Zonen hoher elektrischer Feldgradienten zwischen den Pixel Implantaten \Rightarrow Ladungs-Teilung tiefenabhängig \Rightarrow Trajektorien-Berechnung komplizierter

Nucl. Instr. Meth. Phys. Res. A (in print)

Schlussfolgerungen

Pixel-Isolation (nach Bestrahlung) R höher als erwartet (einige $G\Omega$), trotzdem keine spontanen Entladungen \Rightarrow Hoher Widerstand ist verstanden \Rightarrow R ist nicht zu hoch \Rightarrow Offene p-Stop Ringe funktionieren

Pixel-Kapazität

 C_{pixel} = (25.7 ± 1.8) fF (Erstmessung) ⇒ kleiner als erwartet, ...

Guard Ring Design

Erfüllt Spezifikationen, kann so verwendet werden.

Ladungs-Teilung

Immer noch genügend nach Bestrahlung, jedoch kein uniformer Lorentz-Winkel mehr durch Zonen mit hohen elektrischen Feldgradienten Trajektorien-Berechnung wird komplizierter

Sauerstoffangereichertes Silizium

Hemmt Auswirkungen von Strahlenschäden ("β-Parameter" ⇒ Keinen Einfluss auf Pixel-Isolierung (Oberfläche), aber Einfluss auf Bulk.