Development of a Liquid Argon Purity Monitor for ICARUS

Doktorandenseminar 10.10.01

Laffranchi Marco

Overview of Purity Monitors

But

Impurities in Ar (O₂) capture $e^- \rightarrow$ free e^- are lost!

If capture rate of the free e⁻ is constant

Where N(t) is the number of electrons

t_{drift} is the drift time

 τ is the mean life-time of electrons in LAr

Overview of Purity Monitors

Design Study for the Purity Monitor

The Electric Dipole Field

Close to the source the E-field is well approximated by a single Coulomb field! \Rightarrow High field i.e. V=2kV, R=0.25mm.

i.e: V=2kV, R=0.25mm, r=R+0.05mm

 \Rightarrow E=56kV/cm

Between the two electrodes the E-field is very low!

i.e: V=
$$\pm 2kV$$
, R=0.25mm,
d=100mm \Rightarrow E<5V/cm

The Electric Dipole Field

The Electric Dipole Field

Calculation of the Number of Free Electrons

Source: Pb²¹⁰ \rightarrow 3.72MeV α -particle

Recombination Models

Semi-empirical formula for the recombination at a given E-field. It takes into account the ionization density of the particle

w=23.6eV is the mean energy needed to produce an e⁻-ion pair

k₁ is E-field dependent

Box Model

Birks Model

The e⁻-ion pairs are considered as isolated and, at the beginning, the distribution is uniform in a box of certain dimensions

 N,N_0 are the number of electrons with and without recombination

C depends on source and medium

Recombination Models: Birks $\frac{dE}{dx} \cdot \frac{1}{w}$ Model

Recombination Models: Box Model

 N_{0} are the number of electrons with and without recombination

Calculation of the Number of Free Electrons

Source: Pb²¹⁰ \rightarrow 3.72MeV α -particle in LAr

Institute for Particle Physics ETH Zurich, Group Rubbia

Calculation of the Number of Free Electrons

Source: Pb²¹⁰ \rightarrow 3.72MeV α -particle in LAr

Institute for Particle Physics ETH Zurich, Group Rubbia

•The e⁻ are tracked along the E-field lines with a computer program.

•The drift time should be comparable to the mean life-time for a precise life-time measurement.

The different drift times are given by the starting angle (α)

 \rightarrow The diameter of the Field Shaping Electrodes gives a limit on possible drift times

Institute for Particle Physics ETH Zurich, Group Rubbia

Longitudinal Position between the Anode and the Cathode [cm]

"Stroboscopic" view of an e⁻ cloud moving in a dipole field. The contour is 1σ of the (almost) Gaussian e⁻ distribution. Time intervals of 100 µs are shown.

Experimental Setup

Materials for high purity, vacuum and cryogenic temperature

10k e⁻ preamp and filters to have best S/N. DAQ card @20Ms/s

High purity LAr (CuO filter). Materials for purity, vacuum and cryogenic temperature

Purity Monitor Mechanics

Spherical Anode

A Pt-wire is melted in a flame

 \Rightarrow spherical by superficial tension

Plastic particle coming from a plastic envelope

 \Rightarrow The source is deposited by an electro-chemical procedure

Isotope	Life- time	Modes of Decay	Particle Energy [Mev]	Particle Intensities
$_{82}{\rm Pb}^{210}$	21y	β	0.015	0.81
			0.061	0.19
		α	3.72	1.7E-8
		γ	~0.047	With β
Isotope	Life- time	Modes of Decay	Particle Energy [Mev]	Particle Intensities
$_{80}$ Hg ²⁰⁶	8m	β^{-}	0.935	1.00
		γ	0.305	With β^{-}
Isotope	Life- time	Modes of Decay	Particle Energy [Mev]	Particle Intensities
$_{81}$ Tl ²⁰⁶	4m	β^-	~1.530	1.00
		γ	1.163	6.2E-4

Isotope	Life- time	Modes of Decay	Particle Energy [Mev]	Particle Intensities
₈₃ Bi ²¹⁰	5d	β^-	1.16	1.00
		α	~4.67	1.3E-6
		γ	~0.3	With α
Isotope	Life- time	Modes of Decay	Particle Energy [Mev]	Particle Intensities
Isotope ₈₄ Po ²¹⁰	Life- time 138d	Modes of Decay α	Particle Energy [Mev] 5.30	Particle Intensities 1.00
Isotope ₈₄ Po ²¹⁰	Life- time 138d	Modes of Decay α	Particle Energy [Mev] 5.30 4.52	Particle Intensities 1.00 1E-5

Data Analysis

Need for a Purity Monitor

- Long Drift Length Needs Long Drift Time
 - →The LAr should be so pure that almost all electrons produced by the particle arrive at the grid.

→Filling and on-line operations will need the information of the LAr purity.

- Signal Correction in the Analysis
 - →The LAr is a fine grain homogeneous calorimeter, it means that the number of free e⁻ is proportional to the deposited energy.

→Off-line analysis will need precise information of the LAr purity

