

Selected results obtained with the L3+C experiment

Renzo Ramelli ETH Zurich/CERN

Doktorandenseminar Zurich October 2001

Outline:

- The L3+C Experiment
- Performances of L3 as a muon telescope
- Anisotropy and Point sources search :
 - Overview
 - Method of analysis
 - Results
- Conclusion

L3+C Experiment

The experiment consists of:

•air shower array (to measure primary energy) (Data taking period:2000–2001)

•muon spectrometer (L3 detector) (Data taking period:1999–2000)

(On the original transparent this photo fills the full page)

(On the original transparent this photo fills the full page)

Performance of the muon detector

Momentum resolution

45 GeV: 4.6 % (one octant resolution)

Compare upper and lower subtracks

50 GeV : 3.8 %

100 GeV: 7.7 %

Set different momentum cuts \equiv "Detector at different depths"

Moon shadow

Pointing precision can be checked with moon shadow!

(Possibility to set limit to anti-proton flux)

Anisotropy and Point sources search

Overview

GeV-TeV cosmic rays are known to be very isotropic. \rightarrow Large scale fluctuations ~ 0.05%.

Reason:

•The galactic magnetic field (~ $2 \mu G$) spread out the charged cosmic rays in all directions. (Larmor radius for 1TeV particle: $4 \cdot 10^{-4}$ pc)

•Solar magnetosphere plays also a role for primary $E < \sim 1 \text{TeV}$

Example: Phys. Rev. D 56, 23 (1997).

Relative muon rate as function of Right Ascension of arrival direction

First harmonic: Amplitude: $(5.6\pm1.9)\cdot10^{-4}$ Phase: $8.0^{\circ} \pm 19.1^{\circ}$ Deviation from isotropy may come from:

 Motion of observer with respect to frame where CR are isotropic (Compton–Getting Effect):

$$E' = \frac{E}{1 - \beta \cos(\vartheta)} \qquad f' = \frac{f}{(1 - \beta \cos(\vartheta))^{2.7}}$$

Example: Earth's orbital vel.: 30 km/s $\rightarrow \Delta$ (f'/f) = 0.03 %(seasonal effect)

• Streaming in the direction of $\mathbf{B} \times \nabla \mathbf{U}$, where U is the cosmic-ray density

- Point sources of neutral particles:
 - γ 'S (produce μ via π -photoprduction)
 - Neutrons (decay \rightarrow only for galactic sources and very high energy > 10¹⁷ eV)
 - V'S (detection of up–going has lower background)
 - Exotic particles (SUSY, ...)

Experimental status

- Satellite experiments explored several γ ray sources (continuous and GRB) up to ~30 GeV.
- Cerenkov telescopes observe E–range 0.5–100 TeV
 - (example HEGRA detected GRB and continous sources like BL Lac object Mkn 421 (strong activity in Jan 2001 reported!))
 - sensitivity limited by very small field of view, operation during clear and moonless nights only
- EAS scintillator arrays explore E > 10-100 TeV
 - Tibet–III air–shower array reported 4.8 σ multi–TeV signal from Crab Nebula (ICRC 2001)
 - Akeno EAS array PeV γ 's from Cyg X-3 (1985) (\rightarrow from same source Fly's Eye detector up to 10¹⁸ eV (1988)) (?)

Modell for Cyg X–3

• Muons detections from point sources:

- γ induced EAS are muon poor (protons generate
 ~ 50 × more μ)
- Muons telescopes have normally better angular resolution and operate continously with a large field of view.
- Soudan–1 reported observations of muons > 650 GeV from Cyg X–3 with flux up to 10⁻⁹ cm⁻² s⁻¹ (Marshak et al. 1985) (seen also by other experiments in same decade)
- Soudan-2 observed 5σ excess from AGN 3-C 273 (never published, today is gone!)

L3+C

- Very good angular resolution
- Acceptance up to 200 m²sr
- Lower energy threshold compared with other underground experiment (15 GeV)
- Possibility to fix energy threshold
- Don't expect to see excesses from known sources (but may be from bursts).

METHOD

Local Equatorial coordinates

[Right Ascension] = [sideral time] – [hour angle]

Idea: Scan the sky in a band of fixed declination

Livetime distiribution

(convloution)

Expected Right Ascension Distribution

Large scale anisotropy

Look at the fluctuations on the Right ascension distribution.(All declinations)

Example: Energy cut: 30 GeV $200 \cdot 10^6$ selected events of '99 and 2000

 $\frac{\text{Measured RA distrib.}}{\text{Expected RA distrib.}} -1$

- No significant large scale fluctuation
- Fluctuations < 0.05%

Point sources search

2D Analysis.

Apply the convolution procedure to all single declination bands.

Acceptance in local equatorial coordinates

(2 Nov – 13 Nov 2001)

Expected events distribution (background)

Measured events distribution

Probability distribution

Calculate probability that excesses are caused by statistical fluctuations. (Poisson statistics)

N: measured events m: Background

Plot $-\log(P)$ on the sky map

- log (P) distribution

Drops exponentially as expected.

Analysis

- Different time scales:
 - 1 day, 1month, 1year, 2 years
- Different energy cuts:

20 GeV, 30 GeV, 50 GeV, 100 GeV

■ Bins: 1° x 1°, 2° x 2°, 3° x 3°

Correct for high declination:

1

0

2

1° of Right Ascension corresponds to an effective arc of $[\cos(decl)]^{\circ}$ \rightarrow Sum more bins in Right Ascension direction to preserve solid angle.

20 GeV, 2° x 2°, 1999 (15 July –9 Nov) y99-2-EnertgyCut20 10¹⁰ **Cumulative trials** 3577 ID OVFLW 0.000 109 10^{8} 10 106 105 10^{4} $P = \sum_{n=N}^{\infty} \frac{e^{-m} m^n}{n!}$ 10^{-3} 10^{2} 10

Probability that excess caused by stat. fluctuation: $1/(3.5 \cdot 10^7)$ Number of trials: 40000

6

8

4

10

 $-\log(P)$

Time scale: 1 day

30 GeV, 1° x 1°

Example excess 3 November hour by hour

Other excesses in same direction

Summary of most significant excesses

E cut	$-\log(p)$	measu	red ba	ckgr	
******	*****	<*****	******	******	******
31.7.199	9 12:00 – *******	1.8.1999 *******	12:00 ******	dec1:80-81	RA.: 15h44m–16h 8m *********
30 GeV	8.23	346.	250.1	6	(near BL Lac 1ES 1544+820) (<2°) and γ-source 3EG J1621+8203
******	******	******	******	********	*************************************
2.11.199	9 12:00 – *******	· 3.11.199 ·******	9 12:00 ******	dec:75–76	RA:5h12' –5h 28' ********
20 GeV	8.49	379.	276.6	7	
30 GeV	8.16	352.	255.6	8	
******	******	******	*****	*****	*******
1.5.2000	12:00 – 2 *******	2.5.2000 *******	12:00 ******	dec:56–58	RA:17h56m–18h12m *********
20 GeV	7.57	1676.	1462.6	5	(near γ -source GRO J1753+57) (<2°)
******	******	******	******	******	******
1999 *******	*****	<*****	de ******	ec:21–23	RA 20h44m–20h52m **********
20 GeV	7.61	59651.	58327	7.91	

Known sources

Special plots for known sources:

1H 1430+423, Mrk 421, Mrk 501, Crab, Cyg X–1, Cyg X–3, Geminga, 3–C273, Her X–1, 1es2344+514

NO significant excess seen.

Cyg X-3: Plot -log(P) vs. phase

Conclusion

- Method has been developed to analyse anisotropy and to search for Point Sources with L3+C data.
- Large scale anisotropy < 0.05 % above 30 GeV
- No signal from known strongest γ–sources
- All sky survey: some excesses seen, despite of the fact that they are not forseen. (Statistical fluctuation or real source?)
 - Estimated μ -flux if source hypotesis is correct: ~ $10^{-8} \text{ s}^{-1} \text{ cm}^{-2}$
 - Maximum μ -flux expected from known γ -sources at 20 GeV (Vela pulsar): ~ $10^{-9} \text{ s}^{-1} \text{ cm}^{-2}$ (optimistic!)
 - However Soudan-1 reported μ -flux 10⁻⁹ s⁻¹ cm⁻² from Cyg X-3 at E > 650 GeV (!)
 - → (Maximum µ-flux expected from GRB at 20 GeV:
 ~ 10⁻⁵ s⁻¹ cm⁻² (for short period))