Results from the Technical Run with the First ICARUS T600 Half-Module

Javier Rico

P Detection Technique

Physics potential

№ T600 technical run in Pavia

ETH/UNI Zurich Doktorandenseminar, 10-11 October 2001

Liquid Argon TPC detection principle

★ Ionization electrons can drift over large distances (meters) in a volume of purified liquid Argon under a strong electric field. If a proper readout system is realized it is possible to realize a massive "electronic bubble chamber".

Electron-ion pairs are produced Electrons give the main contribution to the induced current due to the much larger mobility A set of wires at the end of the drift give a sampling of the track. No charge multiplication occurs near the wires \Rightarrow electrons can be used to induce signals on subsequent wires planes with different orientations \Rightarrow 3D imaging

ICARUS liquid argon imaging TPC

T600 half module internal view

Doktorandenseminar 2001

ICARUS Physics program

Supernova neutrinos

Solar neutrinos

Long Baseline neutrinos

Solar neutrino detection

• Real-time detection of neutrinos through two independent reactions

- Detection threshold: $E_{thres} = 5 \text{ MeV} (^{8}\text{B} \text{ and } hep \text{ components of the solar spectrum})$
- Elastic/absorption events separation (by event multiplicity) ⇒ sensitivity to the oscillations
- Background source:

Solar neutrino rates

Before cuts:						
Expected events (no oscillation)						
Process	1 kton x year	5 kton x year				
Elastic scattering	792	3960				
Absorption events						
Fermi	730	3650				
GT	1454	7270				
TOTAL	2976	14880				
Background	306	1530				

Off-line event selection done in terms of **energy of the primary electron** plus:

a) **Elastic:** Angle between electron and solar direction $< 25^{\circ} (\epsilon = 57\%)$

b) **F+GT:** correlation between multiplicity and energy of the associated Compton electrons (ϵ_F =70%, ϵ_{GT} =82%)

Nucl Instr. And Methods A455 (2000) 376

Javier Rico-ETH Zurich

Supernova neutrinos expected rates

 ICARUS can detect neutrinos coming from stellar collapses in our Galaxy via the absorption and elastic events

Atmospheric neutrinos

*Complicated final events with multi-pion products will be completely analyzed and reconstructed ⇒ Zenith angle reconstruction significantly improved!

*Events can be fully reconstructed up to kinematics production threshold (50% of the total predicted rate has $P_{lepton} < 400 \text{ MeV}$) \Rightarrow Fundamental contribution to the understanding of the low energy part of the atmospheric neutrino spectrum

Javier Rico-ETH Zurich

Rates for upward/downward events

For a 2 kton x year exposure, we expect to measure a **significant deficit of upward-going muon-like events**

	$2 \text{ kton} \times \text{year}$							
	$\Delta m_{23}^2 \; (\mathrm{eV}^2)$							
	No osci	5×10^{-4}	1×10^{-3}	3.5×10^{-3}	5×10^{-3}			
Muon-like	270 ± 16	206 ± 14	198 ± 14	188 ± 14	182 ± 13			
Downward	102 ± 10	102 ± 10	102 ± 10	98 ± 10	95 ± 10			
Upward	94 ± 10	46 ± 7	46 ± 7	47 ± 7	49 ± 7			
Electron-like	152 ± 12	152 ± 12	152 ± 12	152 ± 12	152 ± 12			
Downward	56 ± 7	56 ± 7	56 ± 7	56 ± 7	56 ± 7			
Upward	48 ± 7	48 ± 7	48 ± 7	48 ± 7	48 ± 7			

Confirmation of v_{μ} disappearance

Doktorandenseminar 2001

Tau appearance experiment

- Analysis of the electron sample
 - Exploit the small intrinsic ν_e contamination of the beam (0.8% of ν_μ CC)
 - Exploit the unique e/π^0 separation

 $\nu_\mu {\rightarrow} \nu_\tau$

$$v_{\tau}$$
+**N** $\rightarrow \tau$ +**jet**; $\tau \rightarrow e\nu\nu$

Charged current (CC)

```
Br \approx 18\%
```

Background:

$$\nu_e + N \rightarrow e + jet$$

Charged current (CC)

Before cuts (5 years 5 T600): $262 v_e CC$ $49 v_{\tau} CC, \tau \rightarrow e$ $\Delta m^2 = 3 \times 10^{-3} eV^2$

$\tau \rightarrow e$ search: 3D likelihood

- likelihood
 - $\mathbf{E}_{\text{visible}}, \mathbf{P}_{\text{T}}^{\text{miss}},$ $\rho_1 \equiv P_T^{lep} / (P_T^{lep+} P_T^{had} + P_T^{miss})$
 - **Exploit correlation between** variables
 - Two functions built:
 - L_{s} ([Evisible, P_{T}^{miss}, ρ_{l}]) (signal)
 - L_{B} ([Evisible, P_{T}^{miss}, ρ_{I}]) (v_e CC background)
 - Discrimination given by

 $\ln \lambda \equiv L([Evisible, \mathbf{P}_{T}^{miss}, \rho_{I}]) = L_{s} / L_{B}$

$v_{\mu} \rightarrow v_{\tau}$ appearance search summary

5 T600 modules (2.35 kton active LAr) 5 year CNGS running

(2.25 x 10²⁰ p.o.t.)

	Signal	Signal	Signal	Signal	
τ decay mode	$\Delta m^2 =$	$\Delta m^2 =$	$\Delta m^2 =$	$\Delta m^2 =$	BG
	$1.6 \times 10^{-3} \text{ eV}^2$	$2.5 \times 10^{-3} \text{ eV}^2$	$3.0 \times 10^{-3} \text{ eV}^2$	$4.0 \times 10^{-3} \text{ eV}^2$	
$\tau \to e$	3.7	9	13	23	0.7
$\tau \to \rho \text{ DIS}$	0.6	1.5	2.2	3.9	< 0.1
$\tau \to \rho \ QE$	0.6	1.4	2.0	3.6	< 0.1
Total	4.9	11.9	17.2	30.5	0.7

Super-Kamiokande: $1.6 < \Delta m^2 < 4.0$ at 90% C.L.

Nucleon decay search

5 kTons detector \implies 3 × 10³³ nucleons $\Rightarrow \tau_p$ (10³² years) > 6 × T(yr) × ϵ @ 90 C.L.

Javier Rico-ETH Zurich

Doktorandenseminar 2001

$p \rightarrow e^+ \pi^0$ and $p \rightarrow K^+ \nu$ decay kinematics

Exposure: 1000 kton x year

Nuclear effects: pion absorption and rescattering included (FLUKA)

Exclusive Channel Cuts	$p \rightarrow e^+ \pi^0$	$\nu_e \ \mathbf{CC}$	$\bar{ u}_e { m CC}$	ν_{μ} CC	$\bar{\nu}_{\mu}$ CC	ν NC	$\bar{\nu}$ NC	
One π^0	54.00%	6610	2137	15264	5808	8089	3100	\approx 45% π^0
One electron	54.00%	6577	2127	20	0	0	0	absorbed
No π^{\pm} , No protons	51.50%	1234	668	2	0	0	0	in Ar nucleus
Total Momentum $< 0.4 \text{ GeV}$	46.85%	461	128	0	0	0	0	III AI IIUCICUS
0.93 GeV < Total E < 0.97 GeV	45.65%	0	0	0	0	0	0	

Cuts	$p \to K^+ \bar{\nu}$	$\nu_e \ \mathbf{CC}$	$\bar{ u}_e { m CC}$	$\nu_{\mu} \ \mathbf{CC}$	$\bar{ u}_{\mu} \ { m CC}$	ν NC	$\bar{\nu}$ NC
One Kaon	97.30%	310	59	921	214	370	104
No π^0	97.15%	161	30	462	107	197	51
No electrons	97.15%	0	0	455	107	197	51
No muons	97.15%	0	0	0	0	197	51
No charged pions	97.15%	0	0	0	0	109	22
Total Energy $< 0.8 \text{ GeV}$	97.15%	0	0	0	0	0	0

Proton decay: expected backgrounds vs channel

ICARUS Proton Decay: Expected Backgrounds

Sensitivity vs exposure

Extremely good exclusive signal signatures ⇒ Excellent background rejection Discovery with a single

event!

Nuclear effects in signal: fully embedded in FLUKA nuclear model Doktorandenseminar 2001

ICARUS: a graded strategy

After several years of R&D and prototyping, the ICARUS collaboration has built and **FULLY OPERATED** the first **600 ton module** (T600), which will be installed in the Gran Sasso in the year 2002.

T600: internal frame assembly

Javier Rico-ETH Zurich

Doktorandenseminar 2001

T600: slow control sensor installation

T600: wires installation

T600 test run program (I)

- Vacuum : Leak rates and final vacuum level
- Cryogenics
 - Cool down speed
 - LN₂ consumption rates
 - Temperature uniformity
 - Cryostat walls deformation (under vacuum and after filling)
 - Pressure control
 - System stability (possible failures and relative consequences)
- Purification
 - Purity during and after filling
 - Filling speed
 - Gas and liquid recirculation rates
 - Final purity measurement and stability check (with purity monitors and C.R. tracks)
- Mechanics
 - Tensioning system movements during the cool down
 - Wires alignment (using C.R. tracks)

T600 test run program (II)

- HV system
 - Max drift field
 - Check field uniformity (using C.R. tracks)
- LV system
 - Check signals behavior (shapes).
 - System stability
- A.L. control system
 - Remote, Alarms handling
- Slow Control system (including HV control)
 - Remote, alarms handling
 - Performance measurements (efficiency, volume coverage, rates)
 - Flexibility
- Software
 - Data handling & reconstruction
 - Event Display
 - Analysis tools test

T600 test run main phases

Slow Control: summary of sensors

• 16 LAr **level meters** to monitor the LAr filling of the cryostat (FLn, FRn, BLn, BRn, with n=1,..., 4).

• 8 **position meters** to measure the inward an outward movement of the cryostat **walls** during the pumping, leak test and filling with LAr (Wn, with n=1,...,8)

• 7 **position meters** to measure the movement of the springs attached to the **wires** (Hn with n=1,...,6 for the horizontal springs, and V1 for the vertical spring)

• 30 internal + 13 external platinum resistors (**Pt1000**) for the temperature measurement.

T600: some instrumentation

Javier Rico-ETH Zurich

Vacuum phase

The cryostat is **pumped to vacuum** (~10⁻⁴ mbar) in order to **clean** it of any impurity **before filling** it with LAr.

Walls movement during vacuum

Cooling down of the cryostat

LAr thermal compression

LAr thermal compression factor:

$$\frac{1}{V}\frac{dV}{dT}(T \approx 88K) = (3.3 \pm 0.1) \cdot 10^{-3} K^{-1}$$

Doktorandenseminar 2001

Heat transfer

Other slow control results

No vertical temperature gradient observed

Maximum LAr temperature gradient kept below the required 1[•]

The elongation of the springs attached to the wires is less than 300 μm

Electron lifetime

Maximum electron lifetime: 1800 μs

Doktorandenseminar 2001

Javier Rico-ETH Zurich

Doktorandenseminar 2001

a muon bundle.

T600 test @ Pv: Run 308 - Evt 4 (July 2nd, 2001)

Javier R

andenseminar 2001

Conclusions

• The first ICARUS 600 tons half-module has been **constructed** and **fully tested** in Pavia (Italy) from April to August 2001

• A better understanding of the **detector behaviour** during the different run phases has been achieved thanks to the **Slow Control** data

• The ICARUS technology will provide a **powerful tool** in order to explore

✓ **neutrino oscillations** from both, accelerator and non-accelerator beams

- ✓ Solar and Supernova neutrinos
- ✓ and **nucleon decay** searches.