Final status of L3 Standard Model Higgs searches and latest results from LEP wide combinations

Andre Holzner ETHZ / L3

Outline

- Higgs mechanism
- Signal processes
- L3 Detector
- Experimental signatures
- Data Samples
- Flow of a typical analysis
- L3 mass and final variable distributions
- Statistical Method
- L3 estimator evolution and confidence levels
- LEP combined results
- Conclusions

The Higgs mechanism

- Standard Model (SM) has massive gauge bosons and massive fermions (where left- and right-handed fermions behave differently)
 - → mass terms in the Lagrangian which break the gauge symmetry
- The Higgs-Mechanism introduces a new complex doublet field with a non-zero vacuum expectation value which is interpreted as mass-terms.
- One of the four new degrees of freedom can not be associated with so far known particles, it is the field of a new scalar particle, the Higgs Boson

Signal processes

Cross section almost zero for $m_H > \sqrt{s} - m_Z$ (kinematic limit) Small cross section but kinematic limit is \sqrt{s}

The L3 Detector at LEP

Experimental signatures

Channel	Topology	Br. ratio	example
four jets	J J b	≈ 64%	
two jets + missing momentum	$\overline{\overrightarrow{p}}$ $\overline{\overrightarrow{b}}$	≈ 18%	
two jets + lepton pair	l^{-} b \bar{b}	≈ 9.3%	

The L3 data samples

- Cross section is sharply falling above the kinematic limit
 → only the highest energy data are significant
- other LEP experiments collected similar data samples

Analysis flow

L3 combined mass distributions

Higgs candidate mass distributions after different cuts

modest cuts

tight cuts

For testing the presence / absence of a signal, more information is used !!

L3 Final variable distribution by channel

L3 Final variable distribution by channel

L3 combined final variable distribution

• Distribution of final discriminant for $m_h = 115$ GeV (all channels combined):

Going from high purity to high efficiency

Integrating the final variable from right to left:

Statistical Method

- A 'signalness' estimator is calculated from the final discriminant distribution to classify the experimental outcome
- By convention:
 - (more) positive for (more) background like
- Common Estimator used at LEP: $-2\ln Q = -2\ln \frac{\mathcal{L}(\text{data} | \text{sig} + \text{bg})}{\mathcal{L}(\text{data} | \text{bg})}$

Where $\mathcal{L} =$ product of Poisson probabilities

Statistical Method

• ln Q can also be written as:

Estimator as function of mass

-2 ln Q as function of m_H (all channels combined, Y2K + previous data):

No deviation of more than one sigma from the background over the mass range 100-120 GeV

Confidence Levels

• To quantify the observation, Monte Carlo experiments are performed from the expected distributions

One gets a distribution of the background-only and the signal+backgroundexperiments:

Systematic errors are taken into account by varying the background and signal expectations during the trials

Confidence Levels

- Two confidence levels are calculated:
 - CL_s :fraction of sig+bg experiments which
are more signal+background like
than the data ('exclusion CL')
 - CL_b: fraction of bg experiments which are less background-like than the observation ('discovery CL')
- $CL_s < 5\%$: signal can be excluded at 95% CL
- $1-CL_b < 2.7 \cdot 10^{-3} (5.7 \cdot 10^{-7})$ is a 3σ (5 σ) deviation from the background

L3 Confidence Levels

Exclusion confidence level as function of m_h :

Discovery confidence level as function of m_h :

Observed (median expected) $limit:m_H > 112.0$ (112.4) GeV

L3 Summary

- Higgs masses below 112.0 GeV are excluded at 95% confidence level (112.4 GeV expected)
- At $m_h=115$ GeV: observation is within 1σ from the background expectation $(1-CL_b = 32\%)$
- These results have been accepted for publication (Phys.Lett. B517:319, 2001)

LEP wide Results by experiment

LEP wide Results by channel

LEP combined: -2ln Q

Estimator as function of m_h:

LEP combined: Confidence levels

Observed limit is lower than expected limit because of presence of significant candidates

LEP wide Summary

- Almost 2.5 fb⁻¹ of data were analysed
- An excess of signal like events is observed mainly by ALEPH in the four jets channel.
- LEP wide, this excess is most significant at $m_H = 115.6$ GeV, where the probability of a background fluctuation (1-CL_b) is 3.4 %
- Higgs masses below 114.1 GeV are excluded at 95% confidence level
- The LEP wide results are still preliminary, though no major changes are expected for the final publication