CMS-ECAL Readout Chain

Overview and Problematics

Stève Udriot, ETHZ 9 October 2001

CMS-ECALCERN

Overview of the Presentation

• Aim is

- to Show the Problematics
 linked to the Readout Chain
 w.r.to Resolution & Calibration of the CMS-ECAL
- In the present talk
 - After **Overview** of ECAL
 - \rightarrow Description Readout Chain
 - Main streams of Readout Chain
 - Hallmark the Sensitive points
 - Discuss the development of
 Tools for Digitization and
 Energy Reconstruction

Overview of the ECAL

- 61'200 PbWO₄ crystals
 in the barrel with off-vertex pointing geometry
- mounted with laser monitoring

to follow evolution of Light Transmission with radiation.

Overview of the Readout Chain

Main Streams

- $Q \rightarrow V \propto$ deposited energy in crystals
 - \leftrightarrow Preamplificator
- 90dB dynamic range \rightarrow 1.5TeV \leftrightarrow Multi-gain stage
- Signal digitization | no loss in cables until ULR
 ↔ ADC & optical link

Details of Readout Chain

APD's

• 2 APD's/crystals

 \equiv 5% of crystal rear surface with 80% Quantum Efficiency and Gain of 50 Highly contribute to noise due to

77pF capacitance : $4000e^- \rightarrow 10k-e^-$

• Why?

 $\begin{array}{l} \mbox{Crystals} \supset \mbox{low Light Yield of} \\ \mbox{4p.e./MeV/Gain} \Rightarrow \mbox{Gain} \end{array}$

Strong magnetic field of 4T

Output is

 $0 \rightarrow \sim 60 pC$ for $0 \rightarrow 1.5 TeV$ energy deposit.

Typically 50GeV energy deposit in crystal \rightarrow 1.6pC 10k-e⁻ noise = 50MeV

Preamplificator

- Converting $Q \rightarrow V$ with 24mV/pC
- with 2 stage-amplification with same time constant of 43ns
- and shaping

of the form $t/\tau \cdot e^{-t/\tau}$

50GeV signal \rightarrow a pulseshape peaking at 38mV

 $10 k\text{-}e^{\text{-}} \leftrightarrow 38 \mu V$

Multi-gain Stage 1/2

 Aim is 90dB dyn. range = 17bits with 10k-e⁻ noise but only 12 bit radiation hard 40MHz ADC so needs amplification

with gains $G33 \rightarrow G9 \rightarrow G5 \rightarrow G1$

such as to keep low quantification error

over all dynamic range \rightarrow 1.5TeV

50GeV signal \rightarrow 1.27V

 $10k-e^{-}$ noise $\leftrightarrow 1.27mV$

Multi-gain Stage 2/2

- Amplify output of FPPA in parallel by gains 33, 9, 5, 1
- compare signal

in each gain with threshold @ 80% of voltage range

• The logic chooses

the highest gain below threshold and set the MUX to that gain @ each clock counting 40MHz

- S/H insures
 - that signal is stabilized @ ADC digitization
- We end up with

Digitization

• Output buffer

adapts FPPA voltage range to ADC with multiplication coeff. of 1/2

• ADC

 \rightarrow 12 bits

pedestal @ 400 ADC counts

via optical link

ADC	Mode	DC-bal
12 bits	4 bits	4 bits
\rightarrow Upper Level Readout @ 20 × 40 MHz = 800 MHz		

 $50 \text{GeV signal} \rightarrow 400 + 2600 =$ 3000 ADC counts $10 \text{k-e}^{-} \text{ noise} \leftrightarrow 2.6 \text{LSB}$

Sensitive Points

• Hallmark the points

suspected to affect the resolution and master them

• APD

is taken as input signal for different particles

- e⁻, γ w.r.to laser, or background pile-up,...
- Preamp'

linearity of amplitude v.s. energy

stability of pedestal

independance from trigger phase w.r.to clock

 \leftrightarrow dispersion of peaking time

Gain

should not affect the preamp' response reach stability @ gain switches

 as an example cite the Crosstalk issue...

The Crosstalk Problem

 5 channels readout card showed oscillations @ 1.5GeV level and crosstalk via capacitive coupling 2GeV p-p

• Lab test performed

by analysing both analog (scope) and digital (DAQ) signals

Origin of crosstalk isolated and matched with setting of preamp' DC functionning value

Sensitive Points & Resolution

 Example of crosstalk shows
 that physicists focus
 on understanding the details of VFE electronics

• and

- on hallmarking the key points in the readout chain
- together with their role in the resolution
- Now, the resolution reveals itself in processing the sample data and reconstructing the energy

• This needs

to be tested and optimized w.r.to sensitive points

Energy Reconstruction & Digitization

 Development of an Energy Reconstruction tool

taking into account particular aspects of noisy, digitized data

 \leftrightarrow «Smoothing Splines» reached better than 4‰ resolution @ low energy with inperfect FPPA • and of a Digitization/Simulation

in order to parametrize the key parts of the Readout Chain and test the energy reconstruction tool.

Suite l'année prochaine