Simon Baumgartner ETHZ

The 2 Higgs Doublet Model At Hera

OVERVIEW

- Short Reminder: HERA, H1
- The 2 Higgs Doublet Model
- Processes at HERA
- MC study for H1
- Outlook

REMINDER HERA / H1

▶ HERA: ep collisions at 320 GeV CM energy

▶ The H1 detector

- \blacktriangleright Tracking: Drift chamber (-1.5 < η < 1.5)
- ► Vertexing: 2 layers silicon detector Internal resolution $\sim 15 \ \mu m$

► Calo: LAr Res:
$$\frac{\sigma}{\sqrt{E}} = \begin{cases} 12\% & \text{em} \\ 50\% & \text{had} \end{cases}$$

Luminosities:
HERA I $\mathcal{L} \sim 100 \ pb^{-1}$ HERA II $\mathcal{L} \sim 1 \ fb^{-1}$ (Design)

The 2 Higgs Doublet Model

- ► Introduce 2 Higgs Doublets $\Phi_1 = \begin{pmatrix} \Phi_1^+ \\ \Phi_1^0 \end{pmatrix} \quad \Phi_2 = \begin{pmatrix} \Phi_2^+ \\ \Phi_2^0 \end{pmatrix}$
- ► Ratio of vacuum expectation values: $tan\beta \equiv \frac{v_2}{v_1}$
- ▶ Choose unitary gauge → 5 physical Higgs Bosons remain: h^0, A^0, H^0, H^{\pm}
- $\triangleright \alpha \equiv \text{mixing angle in the neutral higgs sector}$
- In a Type II 2HDM (as MSSM) one of the doublets couples only to uptype quarks and neutrinos, the other only downtype quarks and leptons
- ► Type II couplings w.r.t. SM: $hb\bar{b}: \frac{-\sin\alpha}{\cos\beta} \quad ht\bar{t}: \frac{\cos\alpha}{\sin\beta}$ $Ab\bar{b}: \tan\beta \quad At\bar{t}: \ ctg\beta$

2HDM at Lep

- $e^+e^- \to h^0 Z^0: \sim sin^2(\beta \alpha) \\ e^+e^- \to h^0 A^0: \sim cos^2(\beta \alpha)$
- From the first process: $sin^2(\beta \alpha) < 0.1$ for $M_h \leq 50 \text{ GeV}$

2HDM AT LEP (II)

▶ DELPHI Yukawa process (4b)

PROCESSES AT HERA

- ▶ Left: Gluon Fusion (Resolved Photoproduction)
- ▶ Right: Boson-Gluon Fusion (BGF)
- ▶ MC Generator Status:
 - gg-Fusion: Implemented in PYTHIA 6.2
 - BGF: Selfmade Generator based on code for cross section calculation by M.Krawczyk

CROSS SECTIONS

- ► HERA sensitivity at low Higgs masses $M \le 20 \text{ GeV}$
- $\bullet \sigma_{gg \to h} > \sigma_{\gamma g \to b\bar{b}h} \qquad (factor \sim 10)$
- For HERA restrict analyses to low Higgs masses $M < 2m_b$

 \blacktriangleright Depending on tan β restrict to gg-Fusion

CROSS SECTIONS (II)

▶ gg-Fusion: Total cross section for HERA $(A^0, M_A = 9 \text{ GeV})$

▶ Higher sensitivity for either low or high $tan\beta$

HIGGS DECAY BRANCHING RATIOS

MC STUDIES

- Goal: Show or disprove feasibility for 2HDM analysis
- ▶ Restrict to most promising channel:
 - gg-fusion process
 - Restrict to τ channel: A,h $\rightarrow \tau^+ \tau^-$
 - Restrict to leptonic tau decay (BR $\sim 36\%$) but cleanest experimental signal

► Procedure:

- Show possibility to trigger 2HDM at H1 with high efficiency and acceptable rate
 → was shown for L1
- 2. Get a measure for the number of expected signal events at H1
- 3. Get a handle to reduce the background

2HDM L1 TRIGGER FOR HERA I

- ▶ HERA bunch crossing frequency: 10 MHz
- L1 trigger decision after 2.3 μ s based on ~ 256 trigger elements (TE)
- Ratereduction by TE-coincidence
 (L2 input ~ 1 kHz)
- ► Simple algorithm: maximize $\frac{\epsilon_{ij}^2}{R_{ij}}$ $\epsilon_{ij} = \epsilon(TE_i \&\& TE_j) \rightarrow \text{from MC}$ $R_{ij} = P(TE_i | TE_j) \cdot R_j \rightarrow \text{from special run}$

▶ E.g. for $m_A = 9$ GeV:

$TE_i \&\& TE_j$	$rac{\epsilon_{ij}^2}{R_{ij}}$	ϵ_{ij}	R_{ij} [Hz]
77 CIP_4 && 43 SPCLE_IET	0.070149	0.544529	4.226892
77 CIP_4 && 19 DCRPH_TC	0.014280	0.910941	58.110344
77 CIP_4 && 46 SPCLE_TOF_E_1	0.012807	0.843511	55.554848

► Quintessence: 2HDM can be triggered!

GG FUSION: SIGNAL MC

So far 2 MC files for A⁰ available: M_A = 5 GeV, tanβ = 10 (5000 evts ~ 2.5 fb⁻¹) M_A = 9 GeV, tanβ = 10 (5000 evts ~ 5.0 fb⁻¹)
τ decay lepton distributions (9 GeV)

LEPTON FINDERS

- For discrimination against BG:
 Need to tag τ decay leptons
- Use standard lepton finders from H1 reconstruction software
- Determine signal efficiencies (from MC) for decay leptons in central region

Lepton	$m_A = 9 \mathrm{GeV}$	$m_A = 5 { m ~GeV}$
μ^{\pm}	$(65.0 \pm 2.1)\%$	$(49.9 \pm 2.2)\%$
e^{\pm}	$(49.2 \pm 2.2)\%$	$(44.6 \pm 2.2)\%$

▶ Preliminary Signalreduction:

 $0.9_{L1} \cdot 0.22_{CJC} \cdot 0.13_{\tau BR} \cdot 0.25_{LeptonTag} = 0.006$

...still ignoring things like:

$$\blacktriangleright \operatorname{BR}(A^0 \to \tau \tau)$$

► Trigger level 3 efficiency

► Selection efficiency

► ...

BACKGROUND AND DATA SELECTION

 Background for gg-Fusion: H1 99/2000 dataset: tagged photoproduction (~ 5M events)

▶ Preliminary Data Selection:

- ▶ H1 Standard track quality cuts on τ decay lepton candidates
- ▶ Require minimum $p_T > 500$ MeV
- ► Require 2 tracks tagged as leptons (e,μ) → τ decay lepton candidates
- ▶ Require the candidates to have opposite charge
- ▶ Require the candidates to be in opposite

hemispheres: $|\Delta \phi| > \frac{\pi}{2}$

FIRST RESULTS

- ▶ Run this selection over signal MC and BG
- ▶ Results for $M_A = 9$ GeV
 - ϵ_{tot} = Selection efficiency × P_T acceptance

P_T^{cut}	$500 { m MeV}$	$750 \mathrm{MeV}$
ϵ_{tot}	$(38.6 \pm 3.7)\%$	$(30.7 \pm 3.5)\%$
S/B	1:123000	1:86000

 \blacktriangleright Reason for huge BG? \rightarrow Finder Purities

IDEA: USE TRACK ISOLATION

 Assume \(\tau\) decay leptons independent from Hadronic Final State (HFS)

• Cut on track isolation in (η, ϕ) e.g. distance to closest track: $R_{min} \equiv min(\sqrt{\Delta\phi^2 + \Delta\eta^2})$

Summary And Outlook

- ▶ 2HDM cross sections are large enough to be observable at H1 but...
- ► Background is much too large (S/B ~ 1:100000) for $tan\beta = 10$
- ▶ Possible improvements:
 - Look at different track isolation criteria, e.g. energy in cone around lepton candidate
 - Tune lepton finders for low energies (especially electron finder)
 - Multivariate Analysis
- ▶ In any case: need a lot of improvement, otherwise this analysis is not possible