Search for Lepton Flavor Violation at HERA

Linus Lindfeld, Uni Zürich

H1 Collaboration

Graduate students seminar

October 1, 2003

PSI Villingen, CH

Outline

- Introduction
- Model for LFV at HERA
- Former analyses
 - Strategy
 - Results
- Actual analysis
 - Motivation
 - Strategy
 - First plots

Lepton Flavor

$$\begin{pmatrix} \nu_e \\ e \end{pmatrix} \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix} \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix}$$

In SM lepton flavor is individually conserved:

$$N_{e} = N(e^{-}) + N(\nu_{e}) - N(e^{+}) - N(\bar{\nu}_{e})$$
$$N_{\mu} = N(\mu^{-}) + N(\nu_{\mu}) - N(\mu^{+}) - N(\bar{\nu}_{\mu})$$
$$N_{\tau} = N(\tau^{-}) + N(\nu_{\tau}) - N(\tau^{+}) - N(\bar{\nu}_{\tau})$$

But: We can consider lepton flavor as "book-keeping"

quantum number, i.e. there is no underlying gauge symmetry preserving lepton flavor!

Many extensions of SM like GUT, technicolor, compositeness, SUSY give up lepton flavor conservation!

Lepton Flavor Violation

First evidence of LFV:

Super-Kamiokande

neutrino oscillations: $\nu_{\mu} \leftrightarrow \nu_{\tau}$

Further searches for LFV: MEG, PSI

 $\mu \rightarrow e\gamma$

E865, BNL $K^+ \rightarrow \pi^+ \mu^+ e^-$

Are there concepts to look for LFV in *ep* –collisions at HERA?

- - -

Yes, there are!

Leptoquarks

Leptoquarks couple to both quarks and leptons:

Leptoquarks (BRW–Model)

The most general LQ interactions with respect to SM symmetry yield

14 LQ-types according to their quantum numbers: ${}^{Q}S_{I}^{L,R}$, ${}^{Q}V_{I}^{L,R}$

(Buchmüller, Rückl, Wyler, Phys. Lett. B191, 442, 1987)

$F \equiv$	L+	3B	— í	12

F = 2	Prod./Decay	BR	F = 0	Prod./Decay	BR			
Scalar Leptoquarks								
$^{1/3}S_{0}$	$e_R^+ \bar{u}_R \rightarrow l^+ \bar{u}$	1/2	$^{-5/3}S_{1/2}$	$e^+_R u_R ightarrow l^+ u$	1			
	$e^+_L ar{u}_L ightarrow l^+ ar{u}$	1		$e^+_L u_L ightarrow l^+ u$	1			
${}^{4/3}S_0$	$e_L^+ \bar{d}_L \to l^+ \bar{d}$	1	$^{2/3}S_{1/2}$	$e_L^+ d_L ightarrow l^+ d$	1			
$^{4/3}S_1$	$e_R^+ \bar{d}_R \rightarrow l^+ \bar{d}$	1	$2/3 ilde{S}_{1/2}$	$e^+_R d_R ightarrow l^+ d$	1			
$^{1/3}S_{1}$	$e_R^+ \bar{u}_R \rightarrow l^+ \bar{u}$	1/2	ć					
	Vector Leptoquarks							
$^{4/3}V_{1/2}$	$e_L^+ \bar{d}_R \to l^+ \bar{d}$	1	$^{2/3}V_{0}$	$e_R^+ d_L ightarrow l^+ d$	1			
	$e_R^+ \bar{d}_L \rightarrow l^+ \bar{d}$	1		$e_L^+ d_R \rightarrow l^+ d$	1/2			
$^{-1/3}V_{1/2}$	$e_L^+ \bar{u}_R \rightarrow l^+ \bar{u}$	1	$\frac{5/3}{V_0}$	$e_L^{\overline{+}} u_R ightarrow l^+ u$	1			
$^{-1/3} ilde{V}_{1/2}$	$e_R^+ \bar{u}_L \rightarrow l^+ \bar{u}$	1	$5/3V_1$	$e^+_R u_L ightarrow l^+ u$	1			
			$^{2/3}V_{1}$	$e_R^+ d_L \to l^+ d$	1/2			

F= 0: particle –antiparticle F= 2: (anti)particle –(anti)particle

LL, RR: scalar LQ

- LR, RL: vector LQ
- s-channel production:

$$e^+p \longrightarrow LQ \text{ with } F = 0$$

$$e^-p \longrightarrow LQ$$
 with $F = 2$

Linus Lindfeld, Uni Zürich

Search for LQ

$ep \rightarrow \mu X$

Signature: high p_{τ} muon instead of electron \rightarrow high p_{τ}^{miss} (calo.)

$ep \rightarrow \tau X$

Signature: high p_{τ} tau instead of electron, but...

tau almost decays at vertex ($c_{-} \sim 88 \ \mu m$)

decay modes:

characteristic for hadronic decay:

"pencil- like" jet with low charged multiplicity
narrow cluster

•1-3 tracks to narrow cluster

<u>Strategy:</u>

•high- p_T electron in direction of p_T^{miss} •high- p_T muon in direction of p_T^{miss} (calo.)

•narrow high- p_{T} jet in direction of p_{T}^{miss}

$\tau \rightarrow hadrons$

Event selection in previous searches for LFV at H1 and ZEUS:

high-p_{τ} preselection (CC-trigger, high Q²-NC-trigger), no electron with E_{τ} > 5 GeV found

"pencil-like" jet with 1-3 tracks to jet: narrow and hadronical

LQ specific: high p_t^{miss} , at least one high $-p_{\tau}$ -jet & " τ -jet" aligned with p_t^{miss}

$\tau \rightarrow \mu \nu \nu, e \nu \nu$

The $\mu\nu\nu$ -channel should be covered implicitely by the LQ $\rightarrow \mu q$ search with additional p_{τ}^{miss} in the direction of the muon \rightarrow cross check

 \Rightarrow Overall τ -selection efficiency \sim 25%- \sim 31% for M₁₀< 320 GeV

Linus Lindfeld, Uni Zürich

PSI Villingen, CH

11

ep $\rightarrow \tau X$: Limits on low–mass LQ's

ep →τX: Limits on high–mass LQ's

	e 🔫 🖛	- T				F =	: 2	
	BEST EXCLUSION UPPER LIMITS ON $\frac{\lambda_{1i} + \lambda_{3j}}{M_{Lp}^2}$ (in 10 ⁻⁴ GeV ⁻²) FOR LEPTON FLAVOUR VIOLATING LEPTOQUARKS							
9; 9j	SQL	S _{O,R}	5 _{0,R}	s _i t	v _{uu}	V _{1/2,R}	ν _{ιαμ}	
11	G, 0.003 H1: 0.026	1 — πе 0.0032 H1: 0.026	1 — пе 0.0032 H1: 0.031	С _в 0.003 H1: 0.013	τ-⊷πe 0.0016 H1: 0.030	τπe S τ 10 ⁻⁴ H1: 0.018	τπe 0.0016 H1: 0.023	
17	κ πγ⊽ 10 ⁻² H1: 0.046	<u>сере-030</u> H1: 0.046	τ → Ke 0.03 H1: 0.041	К-→ пүў 10 ⁻⁷ H1:0.019	K→ π v v 5 ± 10 ⁰ H1: 0.060	1 → Ke 0.03 H1: 0.048		
13	V 0.004	8 8 1	B	Vы 0.004 H1: 0.022	B→τ≥X 0.04 H1: 0.084	B		
2 1	Kπγ⊽ 10 ⁻⁷ H1:0.023	2505-0.33 H1:0.028	τ→ K.e 0.03 H1: 0.034	κ πγγ 10'' H1: 0.014	K → πγγ 5 τ 10 ⁰ H1: 0.031	τKe 0.03 H1: 0.018	CEUS-000 H1: 0.02	
2 2	τ-+	1 e¥ 0.075 H1: 0.067	t→ey 0.045 H1: 0.048	1→e7 0.015 H1: 0.023	EEUS-0.35 H1: 0.064	11:0.053	EUS-0.11 H1: 0.09	
23	B 1 yx 0.04	84	B→τeX 0.05 H1: 0.053	B→1yx 0.04 H1: 0.036	B-+τεχ 0.04 H1: 0.095	B-+12X 0.04 H1: 0.095	•	
31	B1 yx 0.04		B→τέχ 0.05 H1: 0.039	B-1 yX 0.04 H1: 0.019	B→τ≥X 0,04 H1: 0.031	B→ teX 0.04 H1: 0.032	1 .	
32	B1 vX 0.04	850	B-teX 0.05 H1: 0.069	B→1 yX 0.04 H1: 0.034	B-+ 18X 0.04 H1: 0.071	B teX 0.04 H1: 0.071	13	
33			τ→ εγ 0.045 H1: 0.086	τ	2.EUS-0.18 H1: 0.120	2EUS-018 H1: 0.12		

e - T					$\mathbf{F} = 0$		
BEST EXCLUSION UPPER LIMITS ON $\frac{\lambda_{1i} - \lambda_{3j}}{M_{uv}^2}$ (in 10 ^{°5} GeV ^{°2}) FOR LEPTON FLAVOUR VIOLATING LEPTOQUARKS							
9; 9j	s _{wit}	5 _{1/2,8}		vot	V _{O,R}	ν _{ο,R}	v _i
11	τ→πe 0.0032 H1: 0.046	1 — пе 0.0016 H1:0.037	1 — пе 0.0032 H1:0.062	C ₂ 0.002 H1: 0.015	τ→πe 0.0016 H1:0.013	τ—-πе 0.0016 H1:0.013	C+ 0.002 H1: 0.005
12	LEUS-0.12 H1: 0.047	τ → K.e 0.05 H1:0.035	1 K.e 0.05 H1:0.063	τ K.e 0.03 H1:0.017	τ → K.e 0.03 H1:0.017	2505-0.10 H1: 0.014	К-т луі 2.5 ± 10 H1:0.006
13	48	B-τeX 0.05 H1:0.065	B→1eX 0.05 H1:0.065	B→-J¥X 0.02 H1:0.020	B→teX 0.04 H1:0020	1120	B1 v7 0.02 H1: 0.020
21	ΞΕυS·0.14 H1: 0.13	τ→ K.e 0.03 H1:0.095	τ → K.e 0.03 H1:0.12	τ→Ke 0.03 H1: 0.020	1 K.e 0.03 H1: 0.020	2EUS-0.10 H1: 0.023	К— пу 2.5 ± 10 ^Ф H1:00Ю
2 2	τ-+-εγ 0.03 H1: 0.15	1-+eγ 0.02 H1:0.10	LEUS-0.48 H1: 0.13	EEUS-0.35 H1: 0.024	2605-033 H1: 0.024	CEUS-011 H1: 0.034	
23		B τ eX 0.05 H1: 0.14	B- TeX 0.05 H1: 0.14	B J y X 0.02 H1: 0.035	B-+τ≥X 0.04 H1:0.035		BJvX 0.02 H1:0.03
31	×	B teX 0.05 H1:0.16	B τeX 0.05 H1:0.16	% 0.002 H1: 0.022	B-τex 0.04 H1: 0.022	090	Via 0.007 H1: 0.077
3 2	1	B→τ∈X 0.05 H1:0.19	Β—τεχ 0.05 H1:0.19	B→JyX 0.02 H1:0.026	B→ teX 0.04 H1: 0.026	19 1 0	B 1y 7 0.02 H1: 0.026
33	•	TEUS-072	LEUS-072	1ey 051 = H1:00/5	1→e¥ 051 = H1:0045	8 7 0	

Linus Lindfeld, Uni Zürich

PSI Villingen, CH

Motivation for actual search

- 1998–1999: e⁻p data gives sensitivity to F=2 LQ's
- 1999–2000: e⁺p data gives better limits on F=0 LQ's
- 2003–2006: increased luminosity after upgrade will rigorously improve current limits

polarisation of electrons allows for various exclusive analysis methods

14

Especially for $e \leftrightarrow \tau$, we expect HERA to set most stringent limits on high-mass LQ's couplings: $\lambda_{ei}\lambda_{\tau j}$

Strategy

Analysis of H1 data that covers not only the $\tau \rightarrow$ hadrons channel, but also the $\tau \rightarrow evv$ and $\tau \rightarrow \mu vv$ channel:

On top of introduced analysis techniques use existing tau-finders and/ or develop new tau-finder to increase selection efficiency!

Recent efforts of finding τ 's at H1 promising...

Use the object-oriented framework!

There is no scattered electron!

So, how do we reconstruct the kinematics? From hadronic final state only (Jaques–Blondel–Method) ? depends strongly on HFS energy calibration...

There is a better way!

Neutrinos from high- p_{τ} - τ -decay are boosted in direction of e, μ or jet

 \Rightarrow e, μ or jet carries less energy than the "scattered" τ ,

but it's direction can be used!

 \Rightarrow **Double-Angle-Method** with high-p₁- τ -decay product

First high-p₇ selection

- At least one jet with $p_{\tau} > 10 \text{ GeV}$
- At least one electron, muon or jet with $p_{-} > 10 \text{ GeV}$
- Electron, muon or jet in LAr, i.e. $5^{\circ} < \theta < 145^{\circ}$
- Electron 1° away from phi–crack
- Non–ep background rejection

NC control sample

Linus Lindfeld, Uni Zürich

PSI Villingen, CH

NC control sample

Linus Lindfeld, Uni Zürich

PSI Villingen, CH

NC control sample

Linus Lindfeld, Uni Zürich

PSI Villingen, CH

Summary

- HERA is ideally suited to search for LQ's possesing couplings to mixed fermion states, i.e LFV
- Published results of H1 and ZEUS were competeitive with indirect limits and will be even more so in the future
- The actual analysis is built up and shows progress
- Outlook:
 - More stringent selection criteria in all channels
 - Signal selection efficiencies
 - M_{LQ}-binning
 - Limits