

Charm-photoproduction at HERA

David Meer

Doktorandenseminar 2003

Contents

- Heavy quark production
- Physical motivation
- Jets
- Vertexing
- Event selection
- Monte Carlo results
- A first look at data
- Next analysis steps
- Summary
- 2 David Meer: Charm–photoproduction at HERA

Heavy quark production

Main process: Boson–gluon fusion

- Quark, gluons: hadronisation \rightarrow jet of particles
- Kinematic variables:

$$x = \frac{Q^2}{q \cdot P}, \quad y = \frac{q \cdot P}{k \cdot P}, \quad Q^2 = -q^2 = x \cdot y \cdot s$$

4

Photo production

- Photo production: $Q^2 \rightarrow 0 \text{ GeV}^2$
 - small virtuality of photon
- in NLO: experimental separation between direct / resolved processes not possible

direct vs. resolved processes

Exclusive charm tagging with D*?

•
$$D^{*+} \rightarrow D^0 \pi_s^{+} \rightarrow K^- \pi^+ \pi_s^{+}$$

"Golden channel": small $\Delta m_{\pi s}$

- Low branching ratio: $0.235 \cdot 0.677 \cdot 0.0383 = 0.61 \%$
- Low statistic, try inclusive method.

 \rightarrow Look for jets

Physical motivation: Compare experiment and theory

- Bulk of cross section is dominated by jets from light quarks; good theoretical description of jets from light quarks
- Jets from heavy quarks:
 - c: uncertainty in theoretical predictions: ~45%
 - *b*: smaller uncertainty in theoretical predictions: ~10%
 - in pQCD: expansion parameter proportional to $\ln(1/m_a^2)$
 - $m_{\rm b} \approx 4 \cdot m_{\rm c}$
- Experimental finding contradicts naïve expectation

Inclusive differential jet cross sections (photoproduction)

But: total cross section

Beauty

Charm

David Meer: Charm-photoproduction at HERA

Energy spectra of charm

- Heavy quarks are produced at their mass threshold
 →steep p_t spectra
- Find all quark fragments with a jet algorithm
- Apply a jet cut

Reconstruction of c-quark direction with jet algorithm

12 David Meer: Charm–photoproduction at HERA

ETH Institute for Particle Physics

13

 Each fragmenting charm ends up in a long–lived charmed meson or baryon

Hadron	Name	PDG code	\mathbf{q}_1	q ₂	q ₃	f	σ _f	c τ [μ m]
Mesons	D+	411	С	d~	I	0.232	0.025	315
	D^0	421	С	u~	I	0.549	0.036	123.7
	D _s +	431	С	S ~	I	0.101	0.034	148.6
Baryons	Λ_{c}^{+}	4122	d	u	С	0.076	0.027	61.8
	Ξ_{c}^{+}	4232	u	S	C			98
	Ξ _c ⁰	4132	d	S	C			29
	Ω_{c}^{0}	4332	S	S	С			19

• Long-lived particles \rightarrow secondary vertex

David Meer: Charm–photoproduction at HERA

Charm tagging (Inclusive method)

- Run jet algorithm to define jets in a event
 - Correct energy treatment of tracks and clusters (HFS package)
- Select only good tracks in jet
- For each pair of good tracks in a jet:
 - Fit to 2nd vertex in jet (separation to primary vertex)
 - If fit converges, add to list of hypotheses
 - Cut on significance of decay length and impact parameter

Vertexing

2

Primary

vertex

- Fit two good tracks to secondary vertex
 - SV package from Wolfram Erdmann
 - Use 2du fitter
- Decay length significance $S_{L} = L / \sigma L$
- Impact parameter significance
 S_i= I / σI
- If fit converges, add this 2nd vertex to list of hypotheses
- **15** David Meer: Charm–photoproduction at HERA

Selecting photoproduction: Electron tagger

- Electron Tagger (ET):
 - 49 channel crystal Cherenkov calorimeter
 - Position in the tunnel: z = -33.4 m

TH Institute for Particle Physics Selecting photoproduction events: Reconstruction of kinematic

 Get energy of scattered electron from ET, this defines event kinematic

$$y = \frac{E_{el} - E_{el}}{E_{el}}, \ Q^2 < 0.01 \text{ GeV}$$

Acceptane Electron Tagger

• Acceptance of ET is energy dependent \rightarrow Visible range 0.24 < y < 0.68

David Meer: Charm–photoproduction at HERA

- Event generator: Pythia 6.1
 - c, 100k events (2.8 pb⁻¹)
 - uds, 100k events (1.22 pb⁻¹)
 - b, 100k events (77.3 pb⁻¹)
- At least 1 quark with $p_1 > 3$ GeV in central part
- (Up to now) Only direct processes
- No simulation of electron tagger, correction of tagger acceptance in data

Event / Track selection criteria

- 1 jet $p_t > 4$ GeV in central part ($|\eta| < 1.5$)
- Tracks used for 2nd vertex fit
 - p_t > 0.5 GeV
 - dca < 2.0 cm
 - $|\eta| < 1.5$

– r_{Start} < 45.0 cm

- CST: $nHits_r >= 2$, $nHits_z >= 0$

- $L_{_{CJC}} > 25.0 \text{ cm}$
- Requirements for hypotheses

 $-S_{1}, S_{11}, S_{12} > 2$

I < 1.5 cm, dI < 0.05 cm
 David Meer: Charm-photoproduction at HERA

Decay length significance Impact parameter significance

ETH Institute for Particle Physics

- Impact parameter 1: faster track
- Impact parameter 2: slower track

Same with cut

- S₁ > 2
 S₁₁ > 2, S₁₂ > 2

21 David Meer: Charm-photoproduction at HERA

Impact Parameter 1 Significance, with cut

Expected events in direct processes

David Meer: Charm–photoproduction at HERA

01.10.2003

22

First look at data: Data set

- e⁺p⁺ Data from 1999/2000
- Tagged photoproduction
 - Subtrigger 83
 - mean prescale factor 1.18
 - (up to now) no subtrigger efficiencies
 - ET acceptance corrected
- Good / medium run quality
- \rightarrow 61.8 pb⁻¹ (4.9 M events)
- Normalization of MC <-> data not yet clear; only shape!

Control plots

³⁵ 40 E^{jet}_T [GeV]

40

-- Data Data

MC c

30

0.7

0.8

- Data

MC b

MC c

MC uds

MC uds

24 David Meer: Charm-photoproduction at HERA

01.10.2003

1

у

0.9

Data without cuts

Impact Parameter 1 Significance

Data with cuts

Impact Parameter 1 Significance

Resolved contributions?

 Look at x_γ in 2–jet events to estimate resolved part in data

$$x_{y} = \frac{E_{T}^{jet1} e^{-\eta_{jet1}} + E_{T}^{jet2} e^{-\eta_{jet2}}}{2 y E_{e}},$$

Next steps

- Need more MC statistic
- Include resolved contributions in MC
- Determine subtrigger 83 efficiency
- Use standard background finders
- Measure differential jet cross sections
 - light quarks (measurements already exist, good cross check)
 - charmed jets
- Calculate ratios of these differential cross sections
 - Some detector inefficiencies will cancel
- **28** David Meer: Charm–photoproduction at HERA

Summary

- Method for charm tagging with 2nd vertices seems to work also for photoproduction
- Resolved processes must be included
- Fraction for b quarks can't be neglected
- ... but still a lot of work to do!