Z' studies at the LHC

Anne-Sylvie Nicollerat, ETHZ

in collaboration with Abdelhak Djouadi and Michael Dittmar Graduate students seminar PSI, October 1st 2003

The Standard Model

SM gauge group:

 $SU(3)_c \times SU(2)_L \times U(1)_Y \xrightarrow{SSB} SU(3)_c \times U(1)_{em}$

→ 3 gauge couplings and 8 + 3 + 1 gauge bosons $\sin^2 \theta_W$: free parameter

Why this structure ? Is it possible to achieve a unification ? (Glashow, Georgi; Pati, Salam; Fritsch, Minkowski)

 $G_{SM} \subset SU(5) \subset SO(10) \subset E_6???$

Why a new gauge boson ?

 \rightarrow Extending the SM gauge group...

• Effective Rank-5 models: parameter: β $Z' = Z'_{\chi} \cos \beta + Z'_{\psi} \sin \beta$ $E_6 \rightarrow SO(10) \times U(1)_{\psi} \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi} \rightarrow SM \times U(1)_{\theta_{E_6}}$ Models studied: $Z'_{\psi}, Z'_{\chi}, Z'_{\eta}, Z'_{d}$

> • Left-Right symmetric models: parameter: $\alpha_{LR} \equiv \sqrt{\frac{c_W^2 g_R^2}{s_W^2 g_L^2} - 1}$ $SO(10) \rightarrow SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ Models studied: Z'_{LR}

Sequential Standard Model:

take the SM Z couplings $\rightarrow Z'_{SM}$ (Not gauge invariant but good for comparisons)

New gauge bosons:

Search and **Identification** Favourite decay (this study): $Z' \rightarrow \ell \ell$

Z': already done, a few references...

• Z', theoretical point of view

Robinett, Rosner, *Prospects for a second neutral vector bo*son at low mass in SO(10), Phys. Rev. D25 (1982) 3036

Cvetič, Godfrey, *Discovery and identification of extra gauge bosons*, hep-ph/9504216

Del Aguila, Langacker, Cvetič, *Determination of Z' couplings* to quarks and leptons at future hadron colliders, hep-ph/9303299

Djouadi, Leike, Riemann, Schaile, Verzegnassi, Signals of new gauge bosons at future e^+e^- colliders, Z.Phys.C56:289-300,1992

• Forward-backward asymmetry

Barger, Deshpande, Rosner, Whisnant, *Production, decay and forward-backward asymmetries of extra gauge bosons in* E_6 Phys. Rev. D35 (1987)

Dittmar, Neutral current interference in the TeV region; the experimental sensitivity at the LHC, hep-ex/9606002

Z' experimental searches

Z' at CDF (direct search)

RUN I: $M_{Z'} > 690 \text{ GeV}$

Prospects for RUN II: with 2 fb⁻¹, $M_{Z'} > 1$ TeV 95% C.L.

LEP (indirect search: use A_{FB}^{ℓ} and $\sigma_{\ell\bar{\ell}}, \sigma_{q\bar{q}}$) Upper limits:

+ small mixing angle between Z and Z'

Forward backward asymmetry ?

Z: Take $\cos \theta$ distribution in the Z rest frame:

$$\begin{split} \frac{d\sigma}{d\cos\theta^*} &\propto \frac{3}{8}(1+\cos^2\theta^*) + A_{FB}^\ell\cos\theta^* \\ A_{FB}^\ell &: \gamma + Z + interferences \\ A_{FB}^{0\,\ell} &\propto a_\ell \cdot v_\ell \cdot a_f \cdot v_f \end{split}$$

SM A_{FB}: electroweak fit

Test the SM, is there new physics ??A_{FB} for a Z' : reveal its properties

Observables for a hadron collider

• Reconstruct a mass peak !

- Width: Non relativistic Breit-Wigner fit
- Cross section: Events within 3

Use $\sigma_{\ell\ell} \cdot \Gamma$ (independant of Z' exotic decays) Lepton forward-backward asymmetry

 $\cos\theta$ distribution in the Z' rest frame:

$$rac{\mathrm{d}\sigma}{\mathrm{d}\cos heta^*} \propto rac{3}{8}(1+\cos^2 heta^*) + \mathrm{A}_{\mathrm{FB}}^\ell\cos heta^*$$

 \Rightarrow Unbinned maximum likelihood fit

LHC: pp collisions $\Rightarrow q\bar{q} \rightarrow Z' \rightarrow \ell^+ \ell^-$ Asymmetry in symmetric collisions ? $\Rightarrow Z'$ boost \approx initial quark direction

Asymmetry in symmetric collisions ?

Lepton forward-backward asymmetry

 \Rightarrow Require $|Y_{\ell\ell}| > 0.8$ ($\varepsilon_{cut} \approx 40\%$)

• Z' rapidity distribution: constrain Z' couplings to u and d

 $Y_{Z'}$ depends on Z' couplings to u and d \Rightarrow Get $Y_{Z'_{u\bar{u}}}, Y_{Z'_{d\bar{d}}}, Y_{Z'_{sea}}$ \Rightarrow Fit $Y_{\ell\ell}$ in a given Z' model \rightarrow relative $u\bar{u}, d\bar{d}$ and sea fractions

Standard fast simulation

PYTHIA, $pp \rightarrow (Z, \gamma, Z') \rightarrow ee, \mu\mu$ \sqrt{s} : 14TeV, pp collisions

Reconstucting the events

 \rightarrow CMS/ATLAS e^{\pm} , μ^{\pm} acceptance

- Two isolated leptons with opposite charge
- $p_t^{min}(\ell) > 20 \text{ GeV}$
- $|\eta|(\ell) < 2.5$
- Coplanar lepton pairs: $|\phi| > 160^{\circ} (\sum p_t \approx 0)$

Discriminating the models

Dilepton invariant mass spectrum

 \Rightarrow Combine these observables !

Potential accuracies for 100 fb $^{-1}$

•
$$\Delta \sigma_{\ell\ell}^{3\Gamma} \cdot \Gamma / \sigma_{\ell\ell}^{3\Gamma} \cdot \Gamma$$

- $\sim 0.1 0.3\%$ (stat.) $\oplus 1\%$??(syst.) ($m_{Z'} = 1.5$ TeV) $\sim 8 - 10\%$ (stat.) $\oplus 1\%$??(syst.) ($m_{Z'} = 2.5$ TeV)
- ΔA_{FB}^{onpeak} ~ 0.02 - 0.03 (stat.) ($m_{Z'} = 1.5 \text{ TeV}$) ~ 0.07 - 0.1 (stat.) ($m_{Z'} = 2.5 \text{ TeV}$)
- $\Delta A_{FB}^{interference}$ ~ 0.04 - 0.06 (stat.) ($m_{Z'} = 1.5 \text{ TeV}$) ~ 0.1 - 0.2 (stat.) ($m_{Z'} = 2.5 \text{ TeV}$)
- $\Delta R_{u\bar{u}}$ ~ 5 - 8% (stat.) ($m_{Z'} = 1.5 \text{ TeV}$) ~ 10 - 30% (stat.) ($m_{Z'} = 2.5 \text{ TeV}$)

The 4 observables for a 1.5 TeV Z^\prime

Model	$\sigma_{\ell\ell}^{3\Gamma} \times \Gamma \text{ [fb·GeV]}$			$A_{FB}^{on-peak}$			$A_{FB}^{off-peak}$			$R_{u\bar{u}}$		
Z'_ψ	487	土	5	0.04	土	0.03	0.53	土	0.04	0.60	土	0
Z'_{η}	630	±	20	-0.03	±	0.03	0.45	±	0.04	0.71	\pm	0
Z'_d	1520	±	40	-0.50	±	0.02	0.26	±	0.05	0.00	±	0
Z'_{χ}	2050	\pm	40	-0.23	\pm	0.02	0.26	\pm	0.05	0.22	\pm	0
Z'_{LR}	3630	±	80	0.15	±	0.02	0.06	±	0.06	0.45	±	0
Z'_{SM}	8000	±	140	0.07	\pm	0.02	0.18	\pm	0.03	0.05	\pm	0

Observables vs. model parameters

Outlook

LHC can already do a good job on identifying a Z':

Discovery: up to 5 TeV

Identification: up to 2-2.5 TeV with 100 fb^{-1}

Need to repeat this with a full detector simulation

Results of this study in hep-ph/0307020