Present and future of neutrino (beam) oscillation experiments

Heavy Quarks and Leptons Workshop Puerto Rico, June 2004

Antonio Ereditato (INFN Napoli)

(special thanks to André Rubbia)

Where are we now

What do we know about neutrino masses and mixing?

- there exist 3 'light' neutrinos (LEP)
- masses from direct measurements are small (limits from tritium & cosmology)
- neutrino mix (oscillations) \rightarrow they are massive; PMNS matrix (3 x 3)
- oscillation parameters: 2 large mixing angles $\theta_{sol} \sim \theta_{12}$, $\theta_{atm} \sim \theta_{23}$

2 independent mass splittings: $\Delta m_{sol}^2 \sim \Delta m_{12}^2$ (masses are small, indeed)

 $\Delta m_{atm}^2 \sim \Delta m_{23}^2$

What we do not know...

- absolute mass values (why are they small ?)
- why θ_{12} and θ_{32} angles are large and θ_{13} seems very small or null ?
- Is mass hierarchy the same as for charged leptons (sign of Δm_{23}^2)
- Is there any CP violating phase in the mixing matrix ?

IMPORTANT NOTE: in all this I assume that there is no LSND effect ! Wait for MiniBoone...

A.Ereditato – HQL2004

In particular, estimate of θ_{13} upper bound

Global fit (Maltoni et al.) CHOOZ, solar, Kamland + atmospheric and K2K

Objective of planned and future neutrino beam experiments:

- accurately measure the two Δm^2 , θ_{12} and θ_{23}
- find the value of θ_{13} from P(\mathbf{n}_{m} - \mathbf{n}_{e})
- show CP violating effects (without matter effects)
- show matter effects (without CP violation effects) \rightarrow hierarchy

Neutrino mixing matrix and general 3 neutrino oscillation probability

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} e^{i\alpha_1/2} & \nu_1 \\ e^{i\alpha_2/2} & \nu_2 \\ & \nu_3 \end{pmatrix}$$

$$\begin{split} P(\nu_{\ell} \to \nu_{\ell'}) &= |\sum_{i} U_{\ell i} U_{\ell' i}^{*} e^{-i(m_{i}^{2}/2E)L}|^{2} \\ &= \sum_{i} |U_{\ell i} U_{\ell' i}^{*}|^{2} + \Re \sum_{i} \sum_{j \neq i} U_{\ell i} U_{\ell' i}^{*} U_{\ell j}^{*} U_{\ell' j} e^{i\frac{|m_{i}^{2} - m_{j}^{2}|L}{2E}} \end{split}$$

For the important case of $P(\nu_{\mu} \rightarrow \nu_{e})$ oscillations, we have...

l

 $P(\nu_{\mu} \to \nu_{e}) = \Sigma_{i=1,4} P_{i}$

$$P_{1} = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \left(\frac{\Delta_{13}}{B_{\pm}}\right)^{2} \sin^{2} \frac{B_{\pm}L}{2}$$

$$P_{2} = \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^{2} \sin^{2} \frac{AL}{2}$$

$$P_{3} = J \cos \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \cos \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

$$P_{4} = \mp J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

atmospheric part

solar part

interference

where

$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{2E_{\nu}}$$

$$A = \sqrt{2}G_F n_e$$

$$B_{\pm} = |A \pm \Delta_{13}|$$

$$J = \cos\theta_{13}\sin 2\theta_{12}\sin 2\theta_{13}\sin 2\theta_{23}$$

and the \pm signifies neutrinos or antineutrinos

In vacuum, at leading order:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \propto \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \frac{\Delta m_{23}^{2} L}{4E}$$

A.Ereditato - HQL2004

High intensity neutrinos facilities

Future neutrino beams

	Value of $\sin^2 2\theta_{13}$			
Physics	$> 4 \times 10^{-2}$	$> 1 \times 10^{-2}$	$> 10^{-3}$	$> 10^{-4}$
Seeing $\theta_{13} \neq 0$	MINOS CNGS	Conventional Superbeams Phase I	Conventional Superbeams Phase II	ν Factory $L \ge 3500 \ km$
Mass Hierarchy	Combinations of Phase I Superbeams	Combinations of Phase II Super/ β -beams	Combinations of ν Factory and Super/ β -beams	ν Factory $L \sim 7700 \ km$
Evidence for CP-violation	Combinations of Phase I Superbeams	Combinations of Phase II Super/ β -beams	Combinations of ν Factory and Super/ β -beams	Combinations of ν Factory 2 baselines

Back from the future: work in progress...

K2K: the mother of all LBL experiments

SK plus K2K

The two experiments agree well: full mixing and Δm^2 in the range of 1-3 eV²

K2K looking for electron appearance

- low E neutrinos (few GeV): v_{μ} disappearance experiment
- 4 x10²⁰ pot/y \rightarrow 2500 v_u CC/year
- compare Det1-Det2 response vs E \rightarrow in 2-6 years sensitivity to Δm^2_{atm}

electron appearance in MINOS

t appearance at LNGS in the CNGS beam

- High energy beam: <E> of about 20 GeV: tau appearance search
- 4.5 x10¹⁹ pot/year from the CNGS. In the hypothesis of no oscillation:
- 2600 n_mCC/year per kton detector mass
- Assuming $n_m n_t$ oscillation, with parameters $sin^2 2q = 1$ and $Dm^2 = 2.5 \times 10^{-3} eV^2$:

15 n, CC/year per kton

• construction well advanced: in schedule. Two experiments: OPERA and ICARUS

Start 2006

The OPERA experiment at LNGS: the rebirth of the emulsion technique

- detector: 1800 ton emulsion/lead bricks (ECC technique) complemented by tracking scintillator planes and two muon spectrometers
- •industrial emulsion production and handling
- need huge scanning power/speed: > tens of automatic microscope running in parallel
 @ 10 cm²/hour (advances of the technique)
- Low BG experiment: (<1 ev.) t track reconstruction
 Low statistics: about 10 events/5 years at nominal
 CNGS intensity @ SK parameter values: statistics goes like (Dm²)²
- Aim at beam intensity increase
- Installation in progress

Measure θ_{13}

Off-axis beam in Japan, another experiment with SK: T2K

An off-axis experiment in the NuMI beam: NonA

• recent proposal (March 04); nominal NuMI beam: 0.4 MW

• far detector: 50 kton @ Ash River (MN) 810 km from Fermilab (12 km, 14 mrad off-axis)

• technique: particleboard/liquid scintillator with fiber/APD R/O

• near detector: same as far, 1 ton fid. mass; also use MINERVA?

200 (cm) E 400 150 × 100 × 200 50 0 0 -50 -200-100V. CC -150NC -400-200500 1000 1500 200 400 600 800 1000 0 0 z (cm) z (cm)

Conventional detector design: well known technique of low density fine grained calorimeters (CHARM II at CERN) **cost of about \$150 M**

Stan 2009 . 2010

With some chance, next generation experiments on θ_{13} could measure mass hierarchy and CP effects

Pin down CP phase and mass hierarchy

More distant future: Super-Beams, Beta-Beams, n-fact

Outstanding goal: detect CP violation (if **q**₁₃ not zero!)

high intensity is a must; two approaches on L/E :

long/high (e.g. BNL-Fermilab projects):

short/low (e.g. CERN-SPL to Frejus):

• matter effects increase signal (E_{max1}/E_{max2}) • CP effects increase with L ($3\pi/2$ vs $\pi/2$)

- below threshold for BG (? ...Fermi motion)
- atmospheric neutrino BG
- antineutrino x-section small

DETECTORS

500-1000 kton Water Cerenkov 'a la SK' (Hyper-K, UNO) are considered as baseline

Rationale: exploit a well known technique aim at a 'reasonable' cost

HOWEVER....

Stan 2015 - 2020

...liquid Argon instead of liquid water ?

See A.E. and A. Rubbia

Contribution to the Workshop on Physics with a Multi-MW Proton Source, CERN, 25-27 May 2004

A.Ereditato – HQL2004

Real neutrino events observed by LAr TPC and water Cerenkov

LAr TPC story...

- L.W.Alvarez (late 60'):
- T.Doke (late 60'):
- W.J.Willis & V.Radeka (70'):
- C.Rubbia (1977):
- E.Aprile, C.Giboni, C.Rubbia (1985):
- ICARUS Coll. (1993-1994):
- ICARUS Coll. (1998):
- ICARUS Coll. (2001):
- ICARUS Coll. (2003-2004):
- ICARUS Coll. (2004-2005):

noble liquids for position sensitive detectors systematic studies of noble liquids properties large calorimeters for HEP experiments LAr TPC conceived and proposed high purity \rightarrow long drift distances 3 ton LAr TPC prototype Neutrino detection at CERN with a 50 I LAr TPC cosmic-ray test of the 300 ton industrial module detector/physics papers from the T300 test T600 installation and commissioning at LNGS

ICARUS T300 detector

Liquid Argon medium properties

	Water	Liquid Argon
Density (g/cm ³)	1	1.4
Radiation length (cm)	36.1	14.0
Interaction length (cm)	83.6	83.6
dE/dx (MeV/cm)	1.9	2.1
Refractive index (visible)	1.33	1.24
Cerenkov angle	42°	36°
Cerenkov d²N/dEdx (b =1)	~ 160 eV ⁻¹ cm ⁻¹	[~] 130 eV⁻¹ cm⁻¹
Muon Cerenkov threshold (p in MeV/c)	120	140
Scintillation (E=0 V/cm)	No	Yes (~ 50000 g/MeV @ 1=128nm)
Long electron drift	Not possible	Possible (μ = 500 cm²/Vs)
Boiling point @ 1 bar	373 K	87 K

When a charged particle traverses LAr:

- 1) Ionization process
 - $W_{e} = 23.6 \pm 0.3 \text{ eV}$
- 2) Scintillation (luminescence)
 - $W_{\gamma} = 19.5 \text{ eV}$
 - UV "line" (λ =128 nm \Leftrightarrow 9.7 eV)

No more ionization: Argon is transparent Only Rayleigh-scattering

3) Cerenkov light (if relativistic particle)

Charge
Scintillation light (VUV)
Cerenkov light (if b>1/n)

The Liquid Argon TPC principle

...an electronic bubble chamber

Bubble diameter ~ 3 mm (diffraction limited)

Gargamelle bubble chamber

Medium
Sensitive mass
Density
Radiation length
Collision length
dE/dx

Heavy freon	
3.0	ton
1.5	g/cm ³
1.0	cm
9.5	cm
2.3	MeV/cm

Medium	Liqu	uid Argon
Sensitive mass	Ma	ny ktons
Density	1.4	g/cm3
Radiation length	14.0	cm
Collision length	54.8	cm
dE/dx	2.1	MeV/cm

Electron drift properties in liquid Argon

Electric field, kV/cm Drift velocity versus electric field in liquid argon

 $\sigma_D = 0.9 \text{ mm} \cdot \sqrt{T_D \text{ [ms]}}$ Longitudinal rms diffusion spread at 0.5 kV/cm Average $<\sigma_{\rm D}> = 1.1 \, \rm{mm}$ Maximum $\sigma_{Dmax} = 1.6 \text{ mm}$

Max drift path, m Longitudinal rms diffusion spread versus drift paths at different electric field intensities

3 m

 $(\tau = 10 \text{ ms})$

Drifting charge attenuation versus drift path at different electron lifetimes $(E = 0.5 \, \text{kV/cm})$

Cosmic rays events in the ICARUS T300

25 cm

VUV scintillation light readout

Liquid Argon TPC:

physics calls for applications at two different mass scales

Strong synergy and high degree of interplay

Ideas for a next generation liquid Argon TPC detector for neutrino physics and nucleon decay searches, A.Ereditato, A.Rubbia, Memo to the SPSC, April 2004.

Conceptual design of a ~100 ton LAr TPC for a near station in a LBL facility: Racks Supporting structure φ~5m, L~13m, Outer vessel 15mm thick, weight ~ 22 t φ~4,2 m, L~12 m, Inner vessel 8 mm thick, ~ 10 t 12mLAr Total[~] 240 t Fiducial ~ 100 t Max 3 m @ HV=150 kV E = 500 V/cme-drift 2 views, $\pm 45^{\circ}$ Charge R/O 2 (3) mm pitch Liquid Argon Wires ~10000 (7000) Active volume $f = 150 \, \mu m$ R/O on top of the dewar electr. Ideas for future liquid Argon detectors Also for triggering Scintill. A.Ereditato, A.Rubbia, to appear in Proc. of NUI NT04, LNGS, March 2004 light

T2K would provide an ideal & high intensity beam for such a ~ 100 ton detector

full simulation, digitization, and noise inclusion

n

0.1/spill

38

n,

5800/yr

45/day

100 kton liquid Argon TPC detector

Experiments for CP violation: a giant liquid Argon scintillation, Cerenkov and charge imaging experiment. A.Rubbia, Proc. 11 Int. Workshop on Neutrinos in Venice, 2003, hep-ph/0402110

	Water Cerenkov (UNO)	Liquid Argon TPC
Total mass	650 kton	100 kton
Cost	~ 500 M\$	Under evaluation
p ℝ e p ⁰ in 10 years	10 ³⁵ years e = 43%, ~ 30 BG events	3x10 ³⁴ years e = 45%, 1 BG event
p®nKin 10 years	2x10 ³⁴ years e = 8.6%, ~ 57 BG events	8x10 ³⁴ years e = 97%, 1 BG event
p ® mp K in 10 years	No	8x10 ³⁴ years e = 98%, 1 BG event
SN cool off @ 10 kpc	194000 (mostly n _e p® e⁺n)	38500 (all flavors) (64000 if NH-L mixing)
SN in Andromeda	40 events	7 (12 if NH-L mixing)
SN burst @ 10 kpc	~330 n-e elastic scattering	380 \mathbf{n}_{e} CC (flavor sensitive)
SN relic	Yes	Yes
Atmospheric neutrinos	60000 events/year	10000 events/year
Solar neutrinos	E _e > 7 MeV (central module)	324000 events/year ($E_e > 5 \text{ MeV}$)

Review of massive underground detectors A.Rubbia, Proc. XI Int. Conf. on Calorimetry in H.E.P., CALORO4, Perugia, March 2004

> **Operation of a 100 kton LAr TPC in a future neutrino facility:** Super-Beam: 460 v_{μ} CC per 10²¹ 2.2 GeV protons @ L = 130 km

Beta-beam:15000 v_e CC per 10¹⁹ ¹⁸Ne decays with γ =75

Proton decay: sensitivity vs exposure

"Single" event detection capability

 6×10^{34} nucleons \Rightarrow

 $t_p/Br > 10^{34}$ years $\times T(yr)$ e @ 90 CL

A tentative detector layout...

Single detector: charge imaging, scintillation, Cerenkov light

...and a tentative parameter list

Dewar	$_{\phi}$ ^ 70 m, height $$ 20 m, perlite insulated, heat input $$ 5 W/m²
Argon storage	Boiling Argon, low pressure (<100 mbar overpressure)
Argon total volume	73000 m ³ , ratio area/volume ~ 15%
Argon total mass	102000 tons
Hydrostatic pressure at bottom	3 atmospheres
Inner detector dimensions	Disc f [~] 70 m located in gas phase above liquid phase
Charge readout electronics	100000 channels, 100 racks on top of the dewar
Scintillation light readout	Yes (also for triggering), 1000 immersed 8" PMTs with WLS
Visible light readout	Yes (Cerenkov light), 27000 immersed 8" PMTs of 20% coverage, single gcounting capability

Charge extraction, amplification, readout

Detector is running in bi-phase mode

- Long drift (~ 20 m) ⇒ charge attenuation to be compensated by charge amplification near anodes located in gas phase (18000 e⁻/ 3 mm for a MIP in LAr)
- Amplification operates in proportional mode
- After maximum drift of 20 m @ 1 kV/cm ⇒ diffusion ~ readout pitch ~ 3 mm

Electron drift in liquid	20 m maximum drift, HV = 2 MV for E = 1 kV/cm, v_d^{\sim} 2 mm/µs, max drift time $^{\sim}$ 10 ms
Charge readout view	2 perpendicular views, 3 mm pitch, 100000 readout channels
Maximum charge diffusion	s ~ 2.8 mm (v2Dt _{max} for D = 4 cm ² /s)
Maximum charge attenuation	$e^{-(tmax/t)}$ 1/150 for t = 2 ms electron lifetime
Needed charge amplification	From 100 to 1000
Methods for amplification	Extraction to and amplification in gas phase
Possible solutions	Thin wires (\mathbf{f} ~ 30 mm) + pad readout, GEM, LEM,

Work in progress: Underground storage, engineering issues, process system & equipment, civil engineering consulting, safety, cost & time

Process system & equipment

- Filling speed (100 kton): 150 ton/day \rightarrow 2 years to fill, 10 years to evaporate !!
- Initial LAr filling: decide most convenient approach: transport LAr or in situ cryogenic plant
- Tanker 5 W/m² heat input, continuous re-circulation (purity)
- Boiling-off volume at regime: 30 ton/day: refilling

100 kton detector: milestones

<u>Nov 2003</u>: Venice Workshop

- Basic concepts: LNG tanker, signal amplification, single detector for charge imaging, scintillation and Cerenkov light readout
- Design given for proton decay, astrophysics v's, Super-Beams, Beta-Beams
- Stressed the need for detailed comparison: 1 Mton water versus 100 kton LAr detector
- <u>Feb 2004</u>: Feasibility study launched for underground liquid Argon storage
 - Industry: Technodyne (UK) mandated for the study (expert in LNG design)
 - Design provided as input to the Fréjus underground lab study
 - Salt mine in Poland being investigated as well as other possible sites

<u>March 2004</u>: NUINT04 Workshop

- Identification of a global strategy: synergy between 'small' and 'large' mass LAr TPC
- Intent to define a coherent International Network to further develop the conceptual ideas
- <u>April 2004</u> : Memo to the SPSC in view of the Villars special session (Sept. 2004)
- <u>May 2004</u> : CERN Workshop on a future Multi MW proton source
 - Envision a possible 10 kton full scale prototype (10% of the full detector)
 - Physics applications underground (proton decay) or at surface (neutrino beam)

Ongoing studies and initial R&D strategy

Engineering studies, dedicated test measurements, detector prototyping, simulations, physics performance studies in progress:

- **1)** Study of suitable charge extraction, amplification and imaging devices
- **2)** Understanding of charge collection under high pressure
- 3) Realization and test of a 5 m long detector column-like prototype
- 4) Study of LAr TPC prototypes immersed in a magnetic field
- 5) Study of logistics, infrastructure and safety issues for underground sites

R&D example 1: amplification with Large Electron Multiplier (LEM)

- A large scale GEM (x10) made with ultra-low radioactivity materials (copper plated on virgin Teflon)
 - In-house fabrication using automatic micro-machining
 - Modest increase in V yields gain similar to GEM
 - Self-supporting, easy to mount in multi-layers
- Resistant to discharges (lower capacitance by segmentation)
 - Cu on PEEK under construction (zero out-gassing)

P. Jeanneret et al., *NIM A 500 (2003) 133-143*

R&D example 2: long drift, extraction, amplification: test module

Possible detectors sites in Europe

Two different site topologies

- 1. Hall access via highway tunnel tunnel (Fréjus laboratory project)
- 2. Deep mine-cavern with vertical access (CUPRUM mines, Polkowice-Sieroszowice)

- cooperation agreement: IN2P3/CNRS/DSM/CEA & INFN
- international laboratory for underground physics
- easy access
- safety issues (highway tunnel)
- caverns have to be excavated

- mines by one of the largest world producers of Cu and Ag
- salt layer at ~1000 m underground (dry)
- large caverns exist for a ~ 80000 m³ (100 kton LAr) detector
- geophysics under study
- access through vertical shaft

Argon-Net

• The further developments of the LAr TPC technique, eventually finalized to the proposal and to the realization of actual experiments, could only be accomplished by an international community of colleagues able to identify and conduct the required local R&D work and to effectively contribute, with their own experience and ideas, to the achievement of ambitious global physics goals. In particular, this is true for a large 100 kton LAr TPC detector that would exploit next generation neutrino facilities and perform ultimate non-accelerator neutrino experiments.

• We are convinced that, given the technical and financial challenges of the envisioned projects, the creation of a Network of people and institutions willing to share the responsibility of the future R&D initiatives, of the experiment's design and to propose solutions to the still open questions is mandatory.

• The actions within the Network might include the organization of meetings and workshops where the different ideas could be confronted, the R&D work could be organized and the physics issues as well as possible experiments could be discussed. One can think of coherent actions towards laboratories, institutions and funding agencies to favor the mobility of researchers, to support R&D studies, and to promote the visibility of the activities and the dissemination of the results.

So far colleagues from 21 institutions have already expressed their Interest in joining Argon-Net, to act as 'nodes' of the network

Conclusions and Outlook

- The evidence for neutrino oscillations has opened the way to precision studies of the mixing matrix with accelerator neutrino experiments.
- The generation of running and planned experiments will contribute to narrow-down the errors on the oscillation parameters. The next generation will allow to pin down a non vanishing value of \mathbf{q}_{13} .
- The detection of matter and of CP violating effects will likely require another generation of experiments using high intensity (> MW) neutrino facilities with very massive detectors. At present, two options being considered: a 500-1000 kton water Cerenkov detectors (a la SK) and a 100 kton liquid Argon TPC.
- The liquid Argon TPC imaging has reached a high level of maturity thanks to many years of R&D effort conducted by the ICARUS collaboration. The plan is to operate the kton mass scale detector at LNGS with the ICARUS project.
- The technique is suitable for applications at very different different mass scales:
 - [~] 100 kton: proton decay, high statistics astrophysical & accelerator neutrinos
 - [~] 100 ton: systematic study of neutrino interactions, near detectors at LBL facilities
- In particular, a 100 kton, monolithic LAr TPC based on the industrial technology of LNG tankers and on the bi-phase operation is conceivable. R&D studies are in progress and a global strategy is being defined, possibly envisioning the construction of a 10% mass full scale prototype.
- Look forward to the creation of a dedicated world-wide Network on the LAr TPC technique.