

Future Large Underground Neutrino and Nucleon decay (NNN) Detectors

Chang Kee Jung SUNY at Stony Brook

Neutrino 2004, Paris June 17, 2004

Neutrino04, Paris, June 2004

First Experimental Pursuit of Proton Decays

- 1954: M. Goldhaber (w/ Reines and Cowan, Jr.) publishes the first experimental result on proton lifetime inspired by "Continuous Creation" theory
 - using a liquid scintillator detector (shielded w/ paraffin+lead) containing ~ $3x10^{28}$ protons, he obtains lower limits on τ_p

 $\Rightarrow \tau_p > 10^{21}$ years (for free protons)

 $\Rightarrow \tau_p > 10^{22}$ years (for bound nucleons)

Proton decay meets Neutrino...

Goldhaber and W. Pauli (1958 at BNL)

Mr. Radioactive, I think protons decay.

You cannot be serious! You must be more desperate than I was.

Neutrino04, Paris, June 2004

Current Status

- So far, no evidence for proton decay
- However, there are tantalizing hints for unification
 - Small but finite neutrino mass
 - ⇒ see-saw mechanism?
 - Convergence of the running coupling constants
 - ⇒ Especially with supersymmetry

SUSY Breaking

Neutrino04, Paris, June 2004

Proton decays in SUSY GUIS

Dimension=6 operator gauge boson mediated decays

 τ_{R} (p $\rightarrow e^{+}\pi^{0}$) > 5.4 x 10³³ yrs (current SuperK Lower Limit @90% C.L.)

Neutrino04, Paris, June 2004

Continue: Proton decays in SUSY GUTs

- D=5 op. (color Higgs triplet, q=1/3) mediated decays
 - Dominating decay mode

Neutrino04, Paris, June 2004

continue: SUSY GUTs

- Many models may have been already ruled out!
 - Especially MSSM SU(5) is considered to be completely ruled out (See: H. Murayama & A. Pierce, Phys.Rev.D65:055009,2002, hep-ph/0108104)
- Some say SUSY-SO(10) models are also in trouble.

1998 Neutrino Revolution and Physics Goals for NNN Experiments

Neutrino04, Paris, June 2004

NNN Underground Detector Current Proposals and Ideas

- Water Cherenchov Detectors
 - 3-M, Hyper-Kamiokande, Mton-Frejus, UNO
- Liquid Argon Detectors
 - 100kton-Europe, LANDD
- Liquid Scintilator Detectors
 - LENA (a la SciPIO)
- Magnetized Iron Detectors
 - INO (India-based Neutrino Observatory: a la MONOLITH)
 - ⇒ Focused on atmospheric neutrinos detection

(covered in H. Gallagher's talk)

Future Large Water Cherenkov Detectors

Neutrino04, Paris, June 2004

Design Considerations

- Goal: physics capability ↑ detector cost ↓
- Topology and Size
 - Light attenuation length limit in pure water:
 - \Rightarrow ~80 m at 400 nm
 - PMT pressure limit:

 \Rightarrow ~6 atm (60 m of water)

- Largest possible width of underground cavity:

⇒ ~60 m

⇒ Single largest active module size: ~60m x 60m x 60m

- PMT (photocathode) coverage
 - Need relatively high coverage (~ 40%) for low energy physics (solar and SRN), and 6 MeV γ detection from $p \rightarrow K^+ v$ in oxygen
 - Need fine granularity for LBL v_e appearance experiments to reject π^0 background

- Number and size of the modules for a fixed fiducial volume
 - Module size ↓ detector cost ↑
 - \Rightarrow Larger surface area to fiducial volume ratio
 - Requires more PMTs
 - \Rightarrow Smaller fiducial to total volume ratio
 - ⇒ Need more drifts and auxiliary/service space
 - typically excavation costs for drifts are more expensive than for large volume excavation
 - Module size ↓ Energy Containment ↓
 - \Rightarrow especially crucial in atm nu studies, such as L/E study
 - Module size ↓ Pattern Recognition Capability (with same photocathode coverage) ↓
- ⇒ Keep the module size as large as possible

Detector Site Issues

- Depth ↑
 - cosmogenic background \Downarrow
 - rock instability ↑ rock temperature ↑ detector cost ↑
- Optimal Depth
 - -~4000 mwe (~5000 ft)
 - \Rightarrow Driven by the SRN search and Solar nu study
 - Reduce spallation background
 - ⇒ also reduce the risk of possible unknown B.G. to PDK searches at shallow depths
 - ⇒ minimize detector dead time
 - \Rightarrow keep some amount of cosmic rays for calibration purposes
- Distances from Major Proton Accelerator Labs
 - Different baselines present vastly different physics potential

Detector of Under-Ground Hideous Neutrinos from Universe and from Terrestrial Sources

M. Koshiba, Phys. Rep. 220 (1992) 229

- Three concentric tori w/ 30 m cross-sectional diameter
- Relatively low photocathode coverage (6.5%)
- No veto region
- Total volume: 1.07 Mton
- Focused on astrophysical neutrino detection

Inner r (m)	Outer R (m)	Total M(t)	Fiducial M (t)	Hor. S (m²)	Total S (m ²)	No. of PMTs	Cost in US\$
15	30	133 k	100 k	4.9 k	17.6 k	5.5 k	11.0 M
15	80	355 k	267 k	13.1 k	47.0 k	16.2 k	32.4 M
15	130	577 k	433 k	21.2 k	76.4 k	23.9 k	47.8 M
		1.07 M	0.80 M	39.2 k	141 k	45.6 k	91.2 M

UNO Conceptual Baseline Design (proposed at NNN99)

40%

Only optical

separation

10%

A Water Cherenkov Detector optimized for:

- Light attenuation length limit
- PMT pressure limit
- Cost (built-in staging)

UNO Collaboration 98 Physicists 40 Institutions 7 Countries

> 60x60x60m³x3 Total Vol: 650 kton Fid. Vol: 440 kton (20xSuperK) # of 20" PMTs: 56,000 # of 8" PMTs: 14,900

Neutrino04, Paris, June 2004

The Henderson Mine, Empire, Colorado

Elevation

Hyper-Kamiokande Current Design

Neutrino04, Paris, June 2004

Neutrino04, Paris, June 2004

1 Mton Class WC Detector at Fréjus

- Considered in conjunction w/ an ambitious CERN "Physics with a MMW proton source" initiative
- Window of opportunity with the planned new safety tunnel construction
- Variety of detector design is considered: 3 detectors, UNOlike detector, etc.

Neutrino04, Paris, June 2004

No proposals for Quattro

Neutrino04, Paris, June 2004

3M Detector at Homestake Mine

Neutrino04, Paris, June 2004

astrophysics, nuclear physics and particle physics

⇒ Synergy between accelerator physics and non-accelerator physics

Neutrino04, Paris, June 2004

<mark>p -> e⁺ π⁰ Search Background</mark>

20 Mton-yr Atm nu Background MC

SuperK Standard Cuts ==> 2.2 events/Mton-yr ==> signal eff.: 43.0% Tighter Momentum Cut ==> 0.15 events/Mton-yr ==> signal eff.: 17.4%

p -> e⁺ π⁰ Search Signal

Signal Events w/ Tighter Momentum Cut

No Fermi Momentum

No Binding energy

No Nuclear effect (π^0 scattering, absorption and charge exchange)

⇒ Important to have a medium with free protons

Neutrino04, Paris, June 2004

omparison of the Standard Superk Analys and the HyperK/UNO Analysis

Neutrino04, Paris, June 2004

perK/UNO Proton Decay Sensitivity

Proton Decay in non-GUT Models

"Proton Decay in Intersecting D-brane Models", I. Klebanov and E. Witten, hep-th/0304079 \Rightarrow one of the first few testable calculations/predictions based on string theory $\Rightarrow \tau/\beta_{\text{predicted}}$ (D=6 operators) = ~10³⁶ years (assuming M_{GUT} = 2x10¹⁶ GeV)

"Probing the Plank Scale with Proton Decay",

R. Harnik, D. T. Larson, H. Murayama, and M. Thormeier, hepph/0404260

 \Rightarrow Proton decays in models with a string-inspired anomalous $U(1)_{\chi}$ family symmetry

Proton decays probes Plank scale rather than GUT scale Predicted proton lifetimes similar to the GUT model predictions

Andromeda Galaxy

Supernova Reach ~ 1 Mpc (local group of galaxies)

Supernova Rate ~ 1/10 or 15 yrs

Neutrino04, Paris, June 2004

An example of unstable Eq. Of State \Rightarrow Determination of core collapse mechanism Pons et al., PRL 86, 5223 (2001) \Rightarrow Possible Observation of Birth of a Black Hole!

Neutrino04, Paris, June 2004

SuperK SNR v Search Limits

Theory Model	SK SRN Rate Limit (Efficiency Corrected)	SK SRN Flux Limit (18 MeV < Ee < 82 MeV)	SK SRN Flux Limit (Full Spectrum)	Predicted SRN Flux (Full Spectrum)	
Galaxy evolution (Totani et al., 1996)	3.2 $\frac{\text{events}}{\text{year } 22.5 \text{ kton}}$	< 1.2 $\frac{\overline{v_e}}{cm^2 sec}$	< 130 $\frac{\overline{v_e}}{cm^2 sec}$	44 $\frac{\overline{v_e}}{cm^2 sec}$	
Heavy metal abundance (Kaplinghat et al.,2000)	3.0 $\frac{\text{events}}{\text{year } 22.5 \text{ kton}}$	< 1.2 $\frac{\overline{v_e}}{cm^2 sec}$	< 29 $\frac{\overline{v_e}}{cm^2 sec}$	< 54 $\frac{\overline{v_e}}{cm^2 sec}$	
Constant supernova rate (Totani et al., 1996)	3.4 $\frac{\text{events}}{\text{year } 22.5 \text{ kton}}$	< 1.2 $\frac{\overline{v_e}}{cm^2 sec}$	< 20 $\frac{\overline{v_e}}{cm^2 sec}$	52 $\frac{\overline{v_e}}{cm^2 sec}$	
LMA neutrino oscillation (Ando et al., 2002)	3.5 $\frac{\text{events}}{\text{year } 22.5 \text{ kton}}$	< 1.2 $\frac{\overline{v_e}}{cm^2 sec}$	< 31 $\frac{\overline{v_e}}{cm^2 sec}$	$11 \frac{\overline{v_e}}{cm^2 sec}$	

M.S. Malek et. al, Phys. Rev. Lett. 90, E-ID 061101 (2003)

UNO at 4000 mwe can rule out all models within 3~5 years or discover SNR

Neutrino04, Paris, June 2004

Future Large Liquid Argon Detectors

Neutrino04, Paris, June 2004

Extrapolation of ICARUS technology

Chang Kee Jung

cryostat

Neutrino04, Paris, June 2004

- New approach:
 - single plane readout with long drift distance (20 m max)
 - In situ cryogenic LAr production plant

Neutrino04, Paris, June 2004

Neutrino04, Paris, June 2004

100kt LAr Detector Candidate Siles

Neutrino04, Paris, June 2004

Future Large Liquid Scintillator Detector

Neutrino04, Paris, June 2004

- Large Liquid Scintillator Detector for Low Energy Neutrino Astronomy
- Total (Fiducial) volume: 50 (22) kton
- Scintillator: PXE (~12 m light attenuation length @450 nm)
- 12,000 20" PMTs (30% coverage)
- ~120 pe/MeV

- Physics Goals
 - SN burst
 - (flavor specific galactic SN neutrinos)
 - SRN
 - Solar nu (high stat.)
 - Atmospheric nu
 - LBL
 - Geoneutrinos
 - Proton decay

Neutrino04, Paris, June 2004

75

Sweden

Gulf of

Bothnia

Baltic

vegian Ser

CENTRE FOR UNDERGROUND PHYSICS IN PYHÄSALMI MINE Under sea Coast of Pylos (Greece) ~5000 m Off-axis of CNGS beamline

Pyhasälmi mine in Finland 4060 mwe

Neutrino04, Paris, June 2004

LENA Sample Physics Sensitivities

Event rates for a SN type IIa in the galactic center (10 kpc)

(1) $\overline{v}_e + p \rightarrow e^+ + n$ (2) $\overline{v}_e + {}^{12}C \rightarrow e^+ + {}^{12}B$ (3) $v_e + {}^{12}C \rightarrow e^- + {}^{12}N$ (4) $v_x + {}^{12}C \rightarrow v_x + {}^{12}C^*$ (5) $v_x + e^- \rightarrow v_x + e^-$ (6) $v_x + p \rightarrow v_x + p$ (1) $\overline{v}_e + p \rightarrow v_x + p$ (2) $\overline{v}_e + p \rightarrow v_x + p$ (3) $\overline{v}_e + p \rightarrow v_x + p$ (4) $\overline{v}_e + p \rightarrow v_x + p$ (5) $\overline{v}_e + p \rightarrow v_x + p$ (6) $\overline{v}_e + p \rightarrow v_x + p$ (7) $\overline{v}_e + p \rightarrow v_x + p \rightarrow v_x + p$ (7) \overline{v}_e

Neutral current interactions; info on all flavours ~ **4000** and ~ **2200**

 $\tau/\beta(p \rightarrow K^+ v)$ limit in 10 years: a few 10³⁴ years utilizing triple coincidence of (K^+ , μ^+ , e^+) signals from $K^+ \rightarrow \mu^+ v$ and $K^+ \rightarrow \pi^+ \pi^0$ decay chains

Neutrino04, Paris, June 2004

NNN Status Summary

- Water Cherekov Detectors
 - Mature technology
 - \Rightarrow Reasonable extrapolation from the current experiments (10~20)
 - ⇒ no critical R&D item
 - \Rightarrow Ready to be built (R&D needed mostly to reduce cost)
- LAr Detectors
 - Idea/R&D stage
 - \Rightarrow need to extrapolate the technology from 300 ton to 100 kton (300)
 - ⇒ success of ICARUS (physics output) is critical
 - It will provide a base for extrapolation (physics reach, cost, safety, etc.)
- Liquid Scintillator Detectors
 - Idea/R&D stage but mature technology
 - \Rightarrow extrapolation not unreasonable (~1kton \rightarrow ~50 kton) (50)

⇒ environmental concern and long term property of the scintillator

Report of the Intragency Working Group on Physics of Universe

- Released in April 2004
- Response to CPU report
- Coordinated by NSTC
- Intragency Working Group
 DOE, NSF, OMB, OSTP
- Summary of Recommendations
 - Ready for Immediate Investment and Directions Known
 - ⇒ Dark Energy
 - ⇒ Dark Matter, Neutrinos and Proton Decay
 - \Rightarrow Gravity

A 21 ST CENTURY FRONTIER FOR DISCOVERY THE PHYSICS OF THE UNIVERSE

A STRATEGIC PLAN FOR FEDERAL RESEARCH AT THE INTERSECTION OF PHYSICS AND ASTRONOMY

Neutrino04, Paris, June 2004

Conclusions

- NNN detectors with LBL neutrino beams tackle some of the most important physics questions today w/ potential of major discoveries
 - Rich physics program comparable to LHC/LC
- If built, they will provide a comprehensive nucleon decay and neutrino physics program for the world science community for the 21th century
 - Despite the phenomenal scientific success achieved by the neutrino experiments during the last decade, we do not have any major experiments approved that go beyond 10 years from now
 - \Rightarrow long lead time for large experiments
 - \Rightarrow in order to sustain our community, we must plan ahead
- Intersection of interests from HEP, NP and AP communities; and international community (Europe, Japan and USA)
 - A well organized international effort with common physics goals and strong mutual support can bring a successful experiment somewhere in the world

Announcements

Unification Day

One day workshop on Proton Decay in Unification Theories (as part of the UNO collaboration meeting) Oct. 15, 2004, Colorado, U.S.A. (co-organized by E. Witten and CKJ)

NNN05

Next generation Nucleon decay and Neutrino detector Workshop Spring 2005, Fréjus, France (contacts: S. Katsanevas and CKJ)

Neutrino04, Paris, June 2004