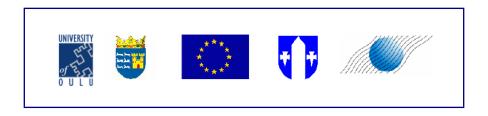
Timo Enqvist


CUPP, Pyhäsalmi timo.enqvist@oulu.fi

WP4: Background

What should be included in the Design Study for

- proton decay
- solar neutrinos
- supernova neutrinos (burst and relic)
- atmospheric neutrinos
- geo-neutrinos
- ...

in terms of background studies?

Proton Decay [page 11 – 14]

LENA

- p \longrightarrow K⁺ $\bar{\nu}$:
 - regional clear signature,
 - \bowtie atmospheric ν background suppression of $\sim 2 \times 10^4$ (with PSA),
 - \square pion and kaon production background rate \sim 0.0064 year⁻¹
- p \longrightarrow e⁺ π^0 :
 - \bowtie atm ν background can be reduced (not yet simulated)
 - To be determined in the Design Study

GLACIER

- p \longrightarrow K⁺ $\bar{\nu}$:
 - 1% mis-interpretation due to kaons, high selection efficiency
 - \implies background less than 1 event $Mt^{-1}year^{-1}$
- p \longrightarrow e⁺ π^0 :
 - [™] background level of 1 Mt⁻¹year⁻¹

MEMPHYS

- p \longrightarrow K⁺ $\bar{\nu}$:
- p \longrightarrow e⁺ π^0 :

⇒ Conclusion: Mostly done (?)

Solar Neutrinos [page 22 – 24]

(1) LENA

- 7 Be neutrinos: number of events $\sim 5 \times 10^{3} \text{ day}^{-1}$
 - depending on the background, could offer a sensitivity of 0.5 % to study the time variation of the flux in one month,
 - To be determined in the Design Study
- ullet pep neutrinos: number of events $\sim\!210~{
 m day}^{-1}$
 - by elastic scattering, needs low background
 - To be determined in the Design Study
- ⁸B neutrinos:
 - [™] by cc with ¹³C
 - some background estimations done, is it enough?

Solar Neutrinos [page 22 – 24]

(2) GLACIER

- ES: $\nu_{\rm x}$ + e⁻ $\longrightarrow \nu_{\rm x}$ + e⁻ ABS: $\nu_{\rm e}$ + $^{40}{\rm Ar} \longrightarrow {\rm e}^{-}$ + $^{40}{\rm K}^{*} \longrightarrow {}^{40}{\rm K}$ + γ 's
 - threshold set to \sim 5 MeV to reject background from neutron capture followed by gamma-ray emission
 - neutrons induced by the spontaneous fission of the cavern rock
 - may be significantly recuded in a salt mine
 - Event rate $\sim 33 \times 10^4 \text{ year}^{-1}$ (66% ABS, 25% ES, 9% neutron background)

To be determined in the Design Study (?)

- lower threshold,
- other background sources,
- better neutron shielding,
- ...

Solar Neutrinos [page 22 – 24]

(3) MEMPHYS

Supernova Neutrinos [page 14 – 22] burst and diffuse

- Burst
 - background generally not a problem high statistics (10^3 – 10^5 events) and short pulse (10 20 sec.)
 - neutronisation burst or tail of the spectrum
 - require a small(er) background
 - To be determined in the Design Study
- Diffuse
 - Some signal-to-background estimation done (Tab. 7)

```
MEMPHYS (43–109)/47
LENA (CUPP) (20–230)/8
GLACIER (40-60)/30
```

- *More studies are needed to estimate the background at the new Fréjus laboratory
- Is this background information satisfactory?
- To be determined in the Design Study (?)

Geo-Neutrinos [page 28 – 29]

LENA

- $\bar{\nu}_{\rm e}$ + p \longrightarrow e⁺ n: gives clear signal
- reactor neutrino background rate at CUPP \sim 240 year $^{-1}$ [1.8–3.2 MeV] and \sim 2200 year $^{-1}$ [1.8–8 MeV]
- \bullet radio impurities (210 Po) are serious background source (as shown by KamLAND)
 - Borexino CTF: ²¹⁰Po rate can be reduced
 - \Longrightarrow less than 10 210 Po events per year in LENA
- Background due to decay of ⁹Li
 estimation from KamLAND
- Muon background at the level of ≈ 1 event per year (at CUPP)
 - \implies 1 (0.3) TW geo-reactor could be identified at a statistical level of better than 4 σ after one (10) year of measurement
 - ⇒ Does not need to be included in the Desing Study (?)
 - neutrons, γ 's, ...

Geo-Neutrinos [page 28 – 29]

MEMPHYS

Atmospheric Neutrinos [page 24 – 28]

Resources & Schedule

- Resources
 - three Post-Docs for two years; one for each detector (third year would be paid by the host institute)
- Schedule
 - period 2008 2010 (three years)
 - milestones

```
2008: solar-\nu and SN-\nu background, 2009: proton decay and geo-\nu background 2010: atm-\nu background, ... (in reality, should be more flexible taking into account different detector properties)
```

deliverables