Physics potential at the Neutrino Factory: Can we benefit from more than just detecting muons?

A.Bueno, M.Campanelli, A.Rubbia ETH Zurich

hep-ph/0005007

Antonio Bueno & Mario Campanelli & André Rubbia, ETH/Zurich May 2000

Neutrino Oscillations at the NuFactory

In a Neutrino Factory we can study in principle 12 independent processes:

Oscillation probabilities:

$$\mu^{-} \rightarrow e^{-} \overline{v}_{e} \qquad v_{\mu}$$

$$v_{e} \rightarrow e^{-} \quad appearance$$

$$v_{\mu} \rightarrow \mu^{-} \quad disappearance$$

$$v_{\tau} \rightarrow \tau^{-} \quad appearance$$

$$\overline{v}_{e} \rightarrow e^{+} \qquad appearance$$

$$\overline{v}_{\mu} \rightarrow \mu^{+} \qquad disappearance$$

$$\overline{v}_{\tau} \rightarrow \tau^{+} \qquad appearance$$
Plus their charge conjugates with μ^{+} beam
$$P(v_{e} \rightarrow v_{e}) = 1 - \sin^{2} 2\theta_{13} \Delta_{32}^{2}$$

$$P(v_{e} \rightarrow v_{\mu}) = \sin^{2} 2\theta_{13} \cos^{2} \theta_{23} \Delta^{2}_{32}$$

$$P(v_{\mu} \rightarrow v_{\mu}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \Delta^{2}_{32}$$

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - 4\cos^{2} \theta_{13} \sin^{2} \theta_{23} (1 - \cos^{2} \theta_{13} \sin^{2} \theta_{23}) \Delta^{2}_{32}$$

$$P(v_{\mu} \rightarrow v_{\tau}) = \cos^{4} \theta_{13} \sin^{2} 2\theta_{23} \Delta^{2}_{32}$$

$$P(v_{\mu} \rightarrow v_{\tau}) = 1 - 4\cos^{2} \theta_{13} \cos^{2} \theta_{23} (1 - \cos^{2} \theta_{13} \cos^{2} \theta_{23}) \Delta^{2}_{23}$$

$$A_{32}^{2} = \sin^{2} (1.27 \Delta m_{32}^{2} L/E)$$

Experimentally, it is not possible to disentangle exactly all 12 oscillation processes.

However, we believe that once such a powerful machine is built, one should try to extract most of the information, with a detector as versatile as possible

LAr TPC at the Neutrino Factory

ICANOE is one of the two large detectors proposed for the CERN-Gran Sasso beam.

- * Liquid Argon target for fine-grained event imaging
- * Calorimeter modules for tail-catching and muon charge+momentum determination

\rightarrow Good technology for a Neutrino Factory

Event classes in ICANOE-like detector

Detector able to identify γ , e, μ and hadrons, charge is measured only for muons.

Events can be classified into four classes, according to the leading particle:

*Electron of any charge
*Muons of same sign as those circulating in ring
*Muons of opposite sign (oscillation, or bg)
*No leading leptons

Possible baselines

With the high fluxes foreseen at the Neutrino Factory we can think of very long baselines:

Ring location	Distance to GS	Mean density
CERN	732 km	2.8 g/cm³
Canary	2900 km	3.2 g/cm ³
FNAL	7400 km	3.7 g/cm ³
KEK	8815 km	4.0 g/cm ³

Event rates for a 10 kton detector

Rates						
		L=732 km	L=2900 km	L=7400 km		
	$\nu_{\mu} CC$	226000	14400	2270		
μ^-	$\nu_{\mu} \text{ NC}$	67300	4120	680		
10^{20} decays	$\bar{\nu}_e \ \mathrm{CC}$	87100	5530	875		
	$\bar{\nu}_e \mathrm{NC}$	30200	1990	300		
	$\bar{\nu}_{\mu}$ CC	101000	6380	1000		
μ^+	$\bar{\nu}_{\mu}$ NC	35300	2240	350		
10^{20} decays	$\nu_e CC$	197000	12900	1980		
	$\nu_e \mathrm{NC}$	57900	3670	580		

No oscillations

 E_{μ} =30 GeV

No polarization

No beam divergence

Detector simulation

ICANOE fully simulated for CNGS studies.
For this study, events fully simulated and passed through ICANOE fast simulation.

$$\frac{\sigma(E)_{e.m.}}{E} = \frac{3\%}{\sqrt{E(GeV)}} \quad \frac{\sigma(E)_{had}}{E} = \frac{20\%}{\sqrt{E(GeV)}} \quad \frac{\sigma(P_{\mu})}{P_{\mu}} = 20\%$$
$$\frac{\sigma(\theta)}{\theta} = 130 mrad / \sqrt{p(GeV)}$$

Proper neutrino cross section used

Charged π^{\pm}, K^{\pm} decay into μ^{\pm} for BG treatment

Antonio Bueno & Mario Campanelli & André Rubbia, ETH/Zurich May 2000

Background treatment

Hadron decays can produce "fake" wrong-sign muon events.

We are not aiming at large background rejection factors.

Simple momentum cut P_{μ} >2 GeV applied

Parameters used

For this study, we consider as our default:

```
* 2*10<sup>20</sup> decays of 30 GeV (μ<sup>+</sup>+μ<sup>-</sup>)
* 3-family mixing with:
→ Δm<sup>2</sup><sub>23</sub>=(3.5, 5, 7) * 10<sup>-3</sup> eV<sup>2</sup>
→sin<sup>2</sup>θ<sub>23</sub>=0.5
→sin<sup>2</sup>2θ<sub>13</sub>=0.05
* 10 kton ICANOE-like detector
```

Observed Spectra

Neutrino oscillations visible in the spectra:

A closer look to different event classes

ν_{τ} appearance

ICANOE has been designed to perform v_{τ} appearance searches at the CNGS.

A similar detector at the Neutrino factory would benefit from the better signal/BG ratio given by the longest baselines:

]	$\nu_{\mu} \rightarrow \nu_{\tau}$ appearance search					
		NC background	$\tau \to h$	Cuts	CC background	$\tau \to l$	Cuts
		100%	100%	Initial	100%	100%	Initial
				cuts	Loose		
		40%	72%	$P_T^{miss} < 1 \text{GeV}$	14%	50%	$P_T^l < 0.5 \text{GeV}$
1 avant		2%	30%	$Q_T > 0.5 \text{GeV}$	0.5%	40%	$P_T^{miss} > 0.6 \text{GeV}$
revent				cuts	Tight		
		40%	72%	$P_T^{miss} < 1 \text{GeV}$	14%	50%	$P_T^l < 0.5 \text{GeV}$
hackarour		0.07%	6%	$Q_T > 1 \text{GeV}$	0.08%	20%	$P_T^{miss} > 1 \text{GeV}$
Jackyluu	-						

τ -enhanced sample

Quasi-elastic events

Provide
$$v - \overline{v}$$
 separation for
all flavors:
 $\rightarrow v_l + n \rightarrow l^- + p$
 $\rightarrow \overline{v}_l + p \rightarrow l^+ + n$

Only way to determine helicity of electron neutrino without explicit electron charge measurement

Real v event in the 50 liter LAr TPC in CERN WANF beam

Goals of Experiments at NUFACT

For second generation long baseline experiments, the main goals will be:

★ Precise determination of ∆m²₂₃ and Θ₂₃
★ Measurement of Θ₁₃
★ Study of matter effects
★ Study of CP violation

Fitting procedure

Parameters are determined by fit of visible energy from the different classes.

We use:

 $\star~\chi^2$ for >40 events in bin

★ -log L for <40 events in bin</p>

Beam systematics: 2% uncorrelated (25 bins) Background added in fit

Earth density and oscillation parameters can vary in the fit or be fixed to reference value

Precise determination of $\Delta m_{23}^2 \Theta_{23}$

Assume $\Theta_{13} = 0 \Rightarrow 2$ -family $v_{\mu} \rightarrow v_{\tau}$ oscillations

Measurement dominated by disappearance dip at large distances for right-sign μ :

* Position: Δm^2_{23} * Height: Θ_{23}

Right-sign muon disappearance

Sensitivity for Δm^2_{23} , θ_{23} measurements

Error on $\Delta m_{23}^2 = 1\%$

Antonio Bueno & Mario Campanelli & André Rubbia, ETH/Zurich May 2000

Statistical improvements

A factor 10 more statistics can still improve the measurement at very long distances

(2% systematics)

3-family mixing

- With $\Theta_{13} \neq 0$, all flavors mix.
- Assuming $\Delta m_{23}^2 \rangle 0$, oscillations involving v_e (\overline{v}_e) are enhanced (suppressed) by MSW interactions with matter

Sensitivity to θ_{13}

Sensitivity to Θ_{13} strongly depends on background level assumed for wrongsign muons

Negligible contribution from other classes

2 orders of magnitude better than ICANOE at CNGS

Quasi-elastics

Quasi-elastic events can confirm discovery of $\nu_{\mu} \rightarrow \nu_{e}$ oscillations. For $\sin^{2}2\theta_{13}=0.05$:

ν_e appearance search with quasi-elastic Electron Class: Events for $10^{21} \mu^-$ decays								
$\bar{\nu}_e \operatorname{CC}$ $\nu_\mu \to \nu_e \operatorname{CC}$ $\nu_\mu \to \nu_\tau \operatorname{CC}, \ \tau \to e$								
Baseline	Total Elastic Total Elastic Total Elas							
L = 732 km	= 732 km 860000 43000 2090 84 3990 110							
L = 2900 km	$\lambda = 2900 \text{ km} \mid 54300 \mid 2700 \mid 1720 \mid 70 \mid 3300 \mid 90$							
L = 7400 km 8300 410 960 40 1450 40								

Measurement of Θ_{13}

Three-family mixing						
$\sin^2 \theta_{23} = 0.5, \ \sin^2 2\theta_{13} = 0.05$						
	All cl	lasses	Only muons			
	χ	2 all	$\chi^2_{rs\mu} + \chi^2_{ws\mu}$			
	L=2900 km	L=7400 km	L=2900 km	L=7400 km		
	Δm_3^2	$L_2 = 3.5 \times 10^{-3}$	3 eV ² ,			
$\delta(\Delta m_{32}^2)$	1.4%	0.9%	1.4%	0.9%		
$\delta(\sin^2 \theta_{23})$	14%	8%	16%	9%		
$\delta(\sin^2 2\theta_{13})$	15% 10%		17%	15%		
$\Delta m_{32}^2 = 5 \times 10^{-3} \text{ eV}^2$						
$\delta(\Delta m_{32}^2)$	0.4% $0.8%$		0.4%	0.8%		
$\delta(\sin^2 \theta_{23})$	11%	8%	10%	12%		
$\delta(\sin^2 2\theta_{13})$	11%	9% 14% 16%				
$\Delta m_{32}^2 = 7 \times 10^{-3} \text{ eV}^2$						
$\delta(\Delta m_{32}^2)$	0.4% 0.6%		0.4%	0.6%		
$\delta(\sin^2 heta_{23})$	7% 8%		8%	18%		
$\delta(\sin^2 2 heta_{13})$	8% 6% 9% 20%					

 Θ_{13} mainly determined by wrong-sign muons.

Including electrons, NC and kinematics for τ can improve precision by more than 30%

Earth density

Influence of density

Density fixed to true value: $\sigma(\sin^2 2\theta_{13})=0.0071$ $\sigma(\sin^2 \theta_{23})=0.044$

Density left free in the fit:

 $\sigma(\sin^2 2\theta_{13}) = 0.0074$ $\sigma(\sin^2 \theta_{23}) = 0.050$

Over-constraining the oscillation

$$\sum_{x=e, \mu, \tau} P(\nu_x \rightarrow \nu_y)=1$$

Assuming new phenomena in oscillations to τ neutrinos, probabilities would change:

$$P(v_{\mu} \rightarrow v_{\tau}) \rightarrow \alpha P(v_{\mu} \rightarrow v_{\tau})$$

Precision on α : O(1%)

Precision on β : O(20%)

Appearance/disappearance test						
Baseline	$\Delta m_{32}^2 \; (\times 10^{-3} \; \mathrm{eV^2})$	$10^{20}\mu^{\pm}$	$10^{21}\mu^{\pm}$	$10^{22}\mu^{\pm}$		
	Precision on $\alpha \Rightarrow \alpha$	$\iota imes P(u_{\mu} -$	$\rightarrow \nu_{\tau})$			
	3.5	5.5%	2%	0.6%		
7400 km	5	6%	2%	0.6%		
	7	11%	3%	1%		
	3.5	4%	2%	0.6%		
2900 km	5	3%	1%	0.4%		
	7	2.5%	1%	0.4%		
Precision on $\beta \Rightarrow \beta \times P(\nu_e \to \nu_\tau)$						
	3.5	60%	20%	7%		
$7400 \mathrm{km}$	5	35%	10%	5%		
	7	25%	7%	2%		
	3.5	75%	25%	9%		
2900 km	5	25%	15%	5%		
	7	30%	10%	4%		

Over-constraining the oscillation

0

0.8

0.85

0.9

0.95

1

1.05

1.15

 $\alpha \mathbf{P}(v_{\mu} \rightarrow v_{\tau})$

1.2

1.1

Effects of CP Violation

L=2900 km, $\Delta m_{12}^2 = 10^{-4} eV^{2}$, $\Delta m_{23}^2 = 3.5^* 10^{-3} eV^2$, $\sin^2\theta_{23} = \sin^2\theta_{12} = 0.5$, $\sin^22\theta_{13} = 0.05$

Increase number of electrons (large, but drawn in the BG)

Change shape in wrongsign muons (smaller but much cleaner)

Sensitivity to CP violation

Sensitivity to CP for wrong-sign muons is maximal at L=2900 km, for neutrino energies around 10 GeV

δ vs θ_{13}

When CP violation only leads to a normalization factor, the effect is very correlated to a variation in θ_{13}

Correlation is much smaller when also a shape change occurs

δ **vs** ρ

In a global fit, even a complete ignorance of the matter density does not spoil the determination of CP

No need for more baselines!

Use of quasi-elastic events

The CP violation effect is large for the electrons, but is hard to see due to v_e background from the beam. Clean signal in quasi-elastic events

CP-violation with quasi-elastic events						
L=2900 km	N_{ele}	N_{ele}	Stat.			
	$(\delta = 0)$	$(\delta = \pi/2)$	significance			
$\Delta m_{32}^2 = 3.5 \times 10^{-3} eV^2$	$10^{21} \ \mu^{\pm}$	35	26	1.5σ		
$\sin^2\theta_{23} = 0.5, \sin^2 2\theta_{23} = 0.05$	$5 \times 10^{21} \ \mu^{\pm}$	175	130	3.4σ		
$\Delta m_{12}^2 = 10^{-4} \text{ eV}^2, \sin^2 \theta_{12} = 0.5$	$10^{22} \ \mu^{\pm}$	350	260	4.8σ		
$\Delta m_{32}^2 = 7 \times 10^{-3} \text{ eV}^2$	$10^{21} \ \mu^{\pm}$	96	85	1.1σ		
$\sin^2\theta_{23} = 0.5, \sin^2 2\theta_{23} = 0.05$	$5 \times 10^{21} \ \mu^{\pm}$	480	425	2.5σ		
$\Delta m_{12}^2 = 10^{-4} \text{ eV}^2, \sin^2 \theta_{12} = 0.5$	$10^{22}~\mu^{\pm}$	960	850	3.6σ		

Sensitivity to $\boldsymbol{\delta}$

Amplitude of CPviolating effects strongly depends on all oscillation parameters, in particular Δm^2_{12} .

High fluxes needed, apart from a little corner of the parameter space

Measurement of CP violation

Conclusions

* Neutrino factory allows simultaneous study of many oscillation phenomena

→A general-purpose detector is needed for:

- Electrons
- Tau identification
- Quasi-elastic events
- Neutral current-like events.

 \star These events contribute to the main measurements:

 $\rightarrow \theta_{13}, v_e \rightarrow v_{\tau}, CP violation$

and provide essential cross-checks

★ To look for new phenomena, we need to overconstrain the oscillation pattern