LBL neutrino beams and experiments

See also arXiv:hep-ph/0106088

André Rubbia, ETH Zürich (ICARUS Collaboration)

Special thanks to A. Bueno, M. Campanelli & S. Navas-Concha

NO-VE: International Workshop on "Neutrino Oscillations in Venice"

24th-26th July, 2001

Three family oscillation phenomenology

MNSP (Maki-Nagawa-Sakata-Pontecorvo) matrix:

Neutrino oscillations phenomenology determined by 6 parameters:

3 angles θ_{12} , θ_{13} , θ_{23} 1 phase δ 2 independent Δm^2 's

In addition, propagation through matter requires additional density parameter ρ of traversed medium (in fact, matter profile)

The target of next generation LBL v experiments

Precise determination of Δm_{23}^2 and Θ_{23}

Stringent limit/precise measurement of ₉₁₃

Determination of Δm_{23}^2 sign

Study matter effects

First detection of $v_e \rightarrow v_{\tau}$ oscillations

Over-constrain the oscillation parameters (matrix unitarity)

Study the δ phase (CP/T violation effects in the

leptonic sector)

André Rubbia, ETH/Zürich, NOVE, 7/26/01

Looking at the θ_{13} term

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

for $\Delta m_{21}^2 (L/4E_v) << 1$:

$$P(v_e \to v_{\mu}) \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 (\Delta m_{32}^2 L/4E_{\nu})$$
$$P(v_e \to v_{\tau}) \approx \sin^2 2\theta_{13} \cos^2 \theta_{23} \sin^2 (\Delta m_{32}^2 L/4E_{\nu})$$

In contrast,

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) = \cos^4 \theta_{13} \sin^2 2\theta_{23} \Delta^2_{32}$$

André Rubbia, ETH/Zürich, NOVE, 7/26/01

3 flavor mixing analysis of atmospheric

Running or approved LBL neutrino beams

	K2K	MINOS	CNGS (shared)
E(GeV)	12	120	400
Pulse (10 ¹² ppp)	6	40	92
Rate (Hz)	0.45	0.53	0.04
Power (MW)	0.0052	0.41	0.22
Pot (/yr)	2 ×10 ¹⁹	3.7×10 ²⁰	4.5 ×10 ¹⁹ (7.6x10 ¹⁹ dedicated)

K2K (KEK-to-Kamioka)

(PI

Accelerator: 12 GeV proton synchrotron
Beam intensity: 6×10¹² protons / pulse
Repetition: 1 pulse / 2.2 sec
Pulse width: 1.1 μs (9 bunches)
Horn-focused wide-band beam
Average neutrino energy: 1.4 GeV → ν_μ - ν_τ despective
Near detector: 300 m from the target
Far detector (Super-Kamiokande): 250 km from the target
Goal: 10²⁰ protons on target

K. Nakamura, Neutrino2000

Naka~ - 03

Unning

André Rubbia, ETH/Zürich, NOVE, 7/26/01

Results
consistent with
neutrino
disappearance.

econstructed Neutrino

Energy (MC

More statistics needed.

Final statistics: Expected 10²⁰ pots

Energy spectrum

MINOS Far Detector

- 8m Octagonal Tracking Calorimeter
- 486 layers of 2.54cm Fe
- 2 sections, each 15m long
- 4.1cm wide solid scintillator strips with WLS fiber readout
- 25,800 m² active detector planes
- Magnet coil provides
 ≈ 1.3T
- 5.4kt total mass

Neutrino 2000 June 17, 2000 Page 9

Wojcick

Neutrino 2000 June 17, 2000 Page 16

MINOS Energy Spectra

10 kt-yr Exposure

Solid lines - energy spectrum without oscillations

Dashed histogram - spectrum in presence of oscillations

$$\Longrightarrow \Delta m_{32}^2, \theta_{23}$$

Wojcicki -

S. Wojcicki, Neutrino2000

André Rubbia, ETH/Zürich, NOVE, 7/26/01

CNGS neutrino beam

The expected v_e and v_{τ} contamination of the CNGS beam are of the CERN 98-02 - INFN-AE/98-05 order of 10⁻² and 10⁻⁷ respect to the dominant v_{μ} . CERN-SL/99-034(DI) - INFN/AE-99/05

CNGS beam characteristics

Nominal V	beam
v_{μ} (m ⁻² / pot)	7.78x10-9
ν_{μ} CC / pot / kton	5.85x10 ⁻¹⁷
$<$ E $>_{v}$ (GeV)	17
$(v_{e} + \overline{v_{e}}) / v_{\mu}$	0.87 %
$\overline{ u}_{\mu}$ / $ u_{\mu}$	2.1 %
ν_{τ} prompt	negligible

400 GeV primary protons **Shared SPS operation** 200 days/year 4.5x10¹⁹ pot / year > Interactions with 1.8 kton target x 5 years

~ 30000 v NC+CC

~ 140 v_{τ} CC (@full mixing, $\Delta m^2 = 2.5 \times 10^{-3} \, eV^2$)

CNGS event rates

No oscillations

- ★ Primary protons: 400 GeV; 4x2.3x10¹³ p/cycle; 26.4 s/cycle
- * Pots per year: 4.5x10¹⁹ pots "shared"; 200x0.75 days/year
- ★ 7.6x10¹⁹ pots/yr "dedicated"

Process	Rates (events/kton/year)	
$\nu_{\mu} \mathbf{C} \mathbf{C}$	2450	
$\bar{ u}_{\mu} \ \mathbf{CC}$	49	
$\nu_{\mathbf{e}} \mathbf{C} \mathbf{C}$	20	
$\bar{\nu}_{\mathbf{e}} \mathbf{C}\mathbf{C}$	1.2	
ν NC	823	1
$ar{ u}$ NC	17	

* Optimized for
$$N_{\tau} \propto \int \phi_{\nu_{\mu}}(E) \times \sigma_{\nu_{\tau}}^{CC}(E) E^{-2} dE$$

$\Delta m^2 \ (eV^2)$	Rates (events/kton/year)					
1×10^{-3}	2.4					
2.5×10^{-3}	15.1 <u>į</u>					
3.5×10^{-3}	29.4					
5×10^{-3}	58.6 V 8					
1×10^{-2}	* 209.0					

CERN 98-02 - INFN-AE/98-05; CERN-SL/99-034(DI) - INFN/AE-99/05

The OPERA experiment

Expected numbers of events

	Å	$v_{\tau} e^{\gamma}$	vents	
t decay	Δr 1.5	n ² (10) 3.2	5.0	b.g.
е	1.7	7.7	18.5	0.19
μ	1.3	5.7	13.8	0.13
h	1.1	4.9	11.8	0.25
Total	4.1	18.3	44.1	0.57

- Full mixing
- 5 years with shared SPS operation (2.25x10²⁰ pot)
 - Average target mass = 1.8 kton

(accounting for mass reduction with time, due to brick removal for analysis)

• Uncertainties on background and efficiencies accounted for in the following

$$\Longrightarrow \Delta m_{32}^2 \times \theta_{23}$$

The ICARUS experiment Wires "Bubble" size ≈ 3 x 3 x 0.2 mm3 DEBOROUND 40 cm **Energy deposition** measured for each point **ICARUS** multi-kton LIQUID ARGON IMAGING MODULE LIQUID ARGON IMAGING MODULE LIQUID ARGON IMAGING MODULE 40 cm Drift LIQUID ARGON ICARUS T600 (approved) MAGNETIZED IRON AIR LIQUIDE MAGNETIZED IRON

First test run in March 2001! In LNGS Tunnel in 2002 Two possible options: A) n x T600 B) m x T1400 (better for physics)

André Rubbia, ETH/Zürich, NOVE, 7/26/01

600 ton detector

The first ICARUS T600 prototype

- The T600 module is to be considered as a <u>fundamental</u> <u>milestone</u> on the road towards a total sensitive mass in the multi-kton range
 - →First piece of the detector to be complemented by further modules of appropriate size and dimension ⇒ Goal is to reach a multikton mass in LNGS tunnel in a most efficient and rapid way
- It has a physics program of its own, immediately relevant to neutrino physics, though limited by statistics (see hep-ex/0103008)

T600 - Completed Internal Half-Detector view

ICARUS T600 semimodule horizontal muon 60° Induction view VERY PRELIMINARY

Wire coordinate

ICARUS T600 high energy electron candidate

The entering track is consistent with the dE/dx deposition of a single electron. An e^+e^- pair from a converted photon would deposit twice as much energy.

VERY PRELIMINARY

Run 308 Event 332 Date 21/06/01

From the position of the shower maximum, we can estimate the electron energy $E_e \approx 20 \text{ GeV}$

ICARUS T600 semimodule stopping muon

VERY PRELIMINARY

60° Collection view

Run 118 Event 11 Date 08/06/01

Drift

CNGS events in 4 kton, 5 years running

$20 \text{ kton} \times \text{year}$

0 - 1	5° 0 <u>7</u> °			$\Delta m_{23}^2 \ (\mathrm{eV^2})$	
$0_{23} = 4$	$5, 0_{13} = 7$	No osci	1×10^{-3}	3.5×10^{-3}	5×10^{-3}
$- u_{\mu}$	CC	54300	53820	49330	44910
$ar{ u_{\mu}}$	CC	1090	1088	1070	1057
$ u_e$	CC	437	437	437	436
$\bar{ u_e}$	CC	29	29	29	29
ν]	NC		1	7550	
$ar{ u}$]	NC			410	
$ u_{\mu}$	$\rightarrow \nu_e \ \mathrm{CC}$	-	7	74	143
$ u_{\mu}$	$\rightarrow \nu_{\tau} \ \mathrm{CC}$	-	52	620	1250
$ar{ u_{\mu}}$	$\rightarrow \bar{\nu_e} \ \mathrm{CC}$	-	< 1	< 1	1
$-\overline{ u_{\mu}}$	$\rightarrow \bar{\nu_{\tau}} CC$	-	< 1	6	13

$v_{\mu} \rightarrow v_{\tau}$ oscillations in ICARUS 4 kton

- * Analysis of the electron sample
 - \rightarrow Exploit the small intrinsic v_e contamination of the beam
 - → Exploit the unique e/π^0 separation
- ★ Expected in 5 years @ CNGS and 4 ktons:

Statistical excess visible before cuts ⇒ this is the main reason for performing this experiment at long baseline !

Reconstructed visible energy * spectrum of electron events clearly evidences excess from oscillations into tau neutrino

 (Π)

40

Reconstructed er	nergy
------------------	-------

Cuts	ν_{τ} Eff.	ν_e	$\bar{\nu}_e$	$\nu_{\tau} CC$	$\nu_{\tau} \text{ CC}$	$\nu_{\tau} CC$	$\nu_{\tau} CC$
	(%)	CC	CC	$\Delta m^2 =$	$\Delta m^2 =$	$\Delta m^2 =$	$\Delta m^2 =$
				10^{-3} eV^2	$2.8 \times 10^{-3} \text{ eV}^2$	$3.5 \times 10^{-3} \text{ eV}^2$	10^{-2} eV^2
Initial	100	437	29	9.3	71	111	779
Fiducial volume	88	383	25	8.2	64	97	686
One candidate with							
momentum $> 1 \text{ GeV}$	72	365	25	6.7	50	80	561
$E_{vis} < 18 \text{ GeV}$	67	64	5	6.2	46	75	522

 $\gamma_{\mu} \rightarrow V_{\tau}$ oscillations

$v_{\mu} \rightarrow v_{\tau}$ oscillations (III)

- ★ Kinematical selection in order to enhance S/B ratio
- * Can be tuned "a posteriori" depending on the actual Δm^2
- For example, with cuts listed below, reduction of background by factor 100 for a signal efficiency 33%

 $\nu_{\tau} CC$ Cuts ν_{τ} Eff. $\nu_{\tau} CC$ $\nu_{\tau} CC$ $\overline{
u}_e$ $\nu_{\tau} CC$ ν_e $\Delta m^2 =$ $\Delta m^2 =$ $\Delta m^2 =$ $\Delta m^2 =$ (%) $\mathbf{C}\mathbf{C}$ CC 10^{-3} eV^2 $2.8 \times 10^{-3} \text{ eV}^2$ $3.5 \times 10^{-3} \text{ eV}^2$ 10^{-2} eV^2 9.3 Initial 437 2971779 100111 Fiducial volume 383 258.2 64 97 686 88 One candidate with momentum > 1 GeV72365 256.7 5080 56156.2 46 75 $E_{vis} < 18 \text{ GeV}$ 67 64 522 $P_T^e < 0.9 \text{ GeV}$ 31 3 5.038 60 54421 $P_T^{lep} > 0.3 \text{ GeV}$ 29235 397 514.7 56 $P_T^{miss} > 0.6 \text{ GeV}$ 33 3.123 4 0.4 37 257

Search for $\theta_{13} > 0$

$\Delta m_{32}^2 = 3.5 \times 10^{-3} \text{ eV}^2; \sin^2 2\theta_{23} = 1$

ICARUS 4kton 5 years @ CNGS

Cuts: Fiducial, $E_e > 1$ GeV, $E_{vis} < 20$ GeV							
$\Delta m_{23}^2 = 3.5 \times 10^{-3} \text{ eV}^2, \ \theta_{23} = 45^o$							
θ_{13}	$\sin^2 2\theta_{13}$	$\nu_e \text{ CC}$	$\nu_{\mu} \rightarrow \nu_{\tau}$	$\nu_{\mu} \rightarrow \nu_{e}$	Total	Statistical	
(degrees)			$\tau \to e$			significance	
9	0.095	79	74	84	237	6.8σ	
8	0.076	79	75	67	221	5.4σ	
7	0.058	79	76	51	206	4.1σ	
5	0.030	79	77	26	182	2.1σ	
3	0.011	79	77	10	166	0.8σ	
$\Longrightarrow \Delta m_{32}^2, \theta_{23}, \theta_{13}$							
$P(v_{\mu})$	$\rightarrow V_{\tau}) = \cos \theta$	$s^4 \theta_{13} \sin^2 2$	$P(\theta_{23}\Delta_{32}^2)$	$(V_{\mu} \rightarrow V_{e}) =$	$=\sin^2 2\theta$	$\sin^2\theta_{23}\Delta^2_{32}$	

André Rubbia, ETH/Zürich, NOVE, 7/26/01

Sensitivity to θ_{13} in three family-mixing

André Rubbia, ETH/Zürich, NOVE, 7/26/01

Study led by US working group:

Oscillation Measurements with Upgraded Conventional Neutrino Beams

April 20, 2001

V. Barger, ¹ R. Bernstein, ⁴ A. Bueno, ² M. Campanelli, ² D. Casper, ³
F. DeJongh, ⁴ S.Geer, ⁴ M. Goodman, ⁵ D.A. Harris, ⁴ K.S. McFarland, ⁶
N. Mokhov, ⁴ J. Morfin, ⁴ J. Nelson, ⁷ F. Pietropaolo, ⁸ R. Raja, ⁴ J. Rico, ²
A. Rubbia, ² H. Schellman, ⁹ R. Shrock, ¹⁰ P. Spentzouris, ⁴ R. Stefanski, ⁴
L. Wai, ¹¹ K. Whisnant ¹²

The oscillation physics program at the Superbeams

Backgrounds for $v_{\mu} \rightarrow v_{e}$:

1. Irreducible beam v_e content (K and μ decays)

2. Electron misidentification

Particle ID: electron identification and measurement
 Near detector : can help predict flux accurately

Superbeams

	K2K	MINOS	CNGS (shared)	JHF	JHF Phase II	Upgraded Booster	Super- NUMI	Super- NGS
E(GeV)	12	120	400	50	50	16	120	360
Pulse (10 ¹³ ppp)	0.6	4	9.2	33		3		4
Rate (Hz)	0.45	0.53	0.04	0.29		15		1
Power (MW)	0.0052	0.41	0.22	0.77	4	1	1.6	2.3
Pot (/yr)	2 ×10 ¹⁹	3.7 ×10 ²⁰	4.5 ×10 ¹⁹	10 ²¹	5×10 ²¹		1.4 ×10 ²¹	7 × 10 ²⁰

 $2000 \Rightarrow 2010$

2008 and beyond

Comparison event rates Superbeams vs Nufactory

Table 1: Neutrino event rates assuming no oscillations, compared with intrinsic beam backgrounds for conventional and muon-derived beams of comparable energies. The calculations assume a 1.6 MW proton source is used for the MINOS-type beam, the neutrino factories provide 2×10^{20} muon decays per year in the beam–forming straight section, and the detector is 732 km downstream of the neutrino source. hep-ph/0103052

	Beam	$\langle E_{\nu} \rangle$	ν_{μ} CC Events	$ u_e/ u_\mu$
Super-NILIMI	(Signal: $\nu_{\mu} \rightarrow \nu_{e}$)	(GeV)	(per kton-year)	Fraction
	MINOS-LE	3.5	1800	0.012
1.61/17/	MINOS-ME	7	5760	0.009
	MINOS-HE	15	12800	0.006
	Beam	$\langle E_{\nu} \rangle$	ν_e CC Events	$ u_{\mu}/\nu_{e} $
Neutrino	Beam (Signal: $\nu_e \rightarrow \nu_\mu$)	$\langle E_{\nu} \rangle$ (GeV)	$ \nu_e \text{ CC Events} $ (per kton-year)	$ u_{\mu}/ u_{e} $ Fraction
Neutrino Factory	Beam (Signal: $\nu_e \rightarrow \nu_\mu$) 4.5 GeV μ Ring	$< E_{\nu} > ({ m GeV})$ 3.5	$ $	$rac{ u_{\mu}/ u_{e}}{ m Fraction}$ 0
Neutrino Factory	Beam (Signal: $\nu_e \rightarrow \nu_\mu$) 4.5 GeV μ Ring 9.1 GeV μ Ring	$< E_{\nu} > ({ m GeV})$ 3.5 7	$ $	$rac{ u_{\mu}/ u_{e}}{ m Fraction} \ 0 \ 0 \ 0$
Neutrino Factory 2x10 ²⁰	Beam (Signal: $\nu_e \rightarrow \nu_\mu$) 4.5 GeV μ Ring 9.1 GeV μ Ring 18.2 GeV μ Ring	$< E_{\nu} >$ (GeV) 3.5 7 15	$\nu_e \text{ CC Events}$ (per kton-year) 400 3700 31400	$rac{ u_{\mu}/ u_e}{ m Fraction} \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $

L=732 km

Intrinsic beam background

Table 2: Electron neutrino fractions and the fractional energy spreads for a selection of current (or next) generation conventional neutrino beams. Note that most beamlines produce a beam with a fractional energy spread between 30% and 50%, and a ν_e contamination that ranges from 0.2% to 1.2%, for beams at or above 1 GeV. hep-ph/0103052

Beamline	Proton	Peak $ u_{\mu}$	$ u_e/ u_\mu$	$\sigma_{E_{\nu}}/E_{\nu}$
	Energy (GeV)	Energy (GeV)	ratio	
K2K	12	1.4	0.7%	1.0
MINOS LE	120	3.5	1.2%	0.28
MINOS ME	120	7	0.9%	0.43
MINOS HE	120	15	0.6%	0.47
CNGS	400	18	0.8%	0.33
JHF wide	50	1	0.7%	1.0
JHF HE	50	5	0.9%	0.40
MiniBooNE	8	0.5	0.2%	0.50
ORLaND	1.3	0.0528	0.05%	0.38

Typ. at the level of 1% for multiGeV beams, assuming 5% error \Rightarrow *natural limit* \approx 5x10⁻⁴

Super-CNGS

CERN Prévessia Site		CNGS (shared)	Super- NGS
Prévessin-Moëns LEP/LHC SPS T 8 T 8 T 8 T 8 T 8 T 8 T 8 T 8 T 8 T 8	E(GeV)	400	360
	Pulse (10 ¹³ ppp)	9.2	4
	Rate (Hz)	0.04	1
	Power (MW)	0.22	2.3
(/ MAY WINY WAY	Pot (/yr)	4.5 ×10 ¹⁹	7 × 10 ²⁰

⇒Assume for simplicity, Super-CNGS = 20xCNGS with same beam optics

≈300 (48) ν_{τ} CC/kt/year @ Δm^2 =2.5(1.0)x10⁻³ eV², full mixing

Also, with high proton yield, *low energy beam* optics optimizations become viable!

 $\Delta m_{32}^2 = 3x10^{-3} \text{ eV}^2; \sin^2 2\theta_{23} = 1; \sin^2 2\theta_{13} = 0.05$

ICARUS 4kton @ LNGS 5 years @ super-CNGS

 $V_{\mu} \leftrightarrow V_{e}$ oscillations (CNGS superbeam)

André Rubbia, ETH/Zürich, NOVE, 7/26/01
Θ_{13} sensitivity (CNGS superbeam)

To parameterize different types of detectors

Exposure (statistical error of signal):

$$D \equiv M_{fiducial} \times \mathcal{E}_{signal} \times t_{data-taking} [kt \times years]$$

<u>Background (statistical error of signal):</u> $f_B \equiv background fraction (relative to CC)$

Background (systematic error of background):

$$\sigma(f_B) / f_B \equiv fractional uncertainty$$

A detector comparison

Table 4: Detector background rates (f_B) , signal efficiencies, and unit costs. Water cerenkov backgrounds and efficiencies are neutrino energy dependent: numbers left of the arrows for a 1 GeV beam, numbers right of the arrows for a multi–GeV beam requiring y < 0.5.

	Water Cerenkov	Liquid Argon	Steel+readout		Liquid. ⁷
	(UNO)	(ICARUS)	(MINOS)	(THESEUS)	Scintillator
Signal Efficiency	$0.7{ ightarrow}0.5$	0.90	0.33	$0.6^{\circ}, g$	0.76
$f_B(NC)$	0.02 ightarrow 0.04	0.001	0.01	0.01	< 0.006
$f_B(\text{beam})$	0.002	0.002	0.002	0.002	0.002
$f_B(\tau)$	0 ightarrow 0.01	$\sim 0.005^{c}$	0.02°	00	$\sim 0.005^{\circ}$
f_B	0.02 ightarrow 0.05	~ 0.008	0.03	0.01	~ 0.01
Electron cut	$>$ 0.5 $ imes$ $E_{ u}$	$none^d$	$1-6 \mathrm{GeV}$	$> 0.5 E_{vss}$	$E_{vss} > 2 \mathrm{GeV}$
Unit cost (M\$/kt) ^a	2.4	23	10.4	78	59
Mass (kt) / 500 M8	745	37	85	6.4	260
$D (\text{kt-yrs})^c$	$2600 \rightarrow 1860$	170	140	19	990

hep-ph/0103052

hep-ph/0103052

1.6MW Super-NUMI

JHF-Kamioka neutrino project

- L=295km, Ev=0.5~2 GeV
 - match to a Water Cherenkov detector (SK exists)
 - generally easy to build a larger detector
 - less NC π^0 background to $\nu_{\mu} \rightarrow \nu_{e}$
 - good v energy reconstruction by QE interaction
 - good particle ID capability
 - small matter effect (difficult to see the sign of Δm_{23}^2 , but easier to look for CP violation.)
 - match to a size of Japan with the existing facilities

Nakaya, NUFACT01

Neutrino beam and detectors:

Phase-I (0.77MW + Super-K) Phase-II (4MW+Hyper-K) ~ Phase-I × 200 Nakaya, NUFACT01

<u>v_e appearance</u>

Background rejection against NC π^0 is improved.

Phase II: upgraded 4MW machine coupled to Mton Water detector

Nakaya, NUFACT01

• Compare $v_{\mu} \rightarrow v_{e}$ with $\overline{v_{\mu}} \rightarrow v_{e}$

André Rubbia, ETH/Zürich, NOVE, 7/26/01

CERN superbeam option: Requires the SPL (Superconducting Proton Linac)

Mezzetto, NUFACT01

Three detectors scenario

Mezzetto, NUFACT01

Water Čerenkov detector á la SuperK (40% PMT coverage) with 40 kton fiducial mass

- $\epsilon_s \sim 70\%$ (from a full simulation + analysis)
- $f_B(\pi^0 \ / e) \sim 0.002$ (full simulation + analysis using energy flow fitter to identify π^0)
- $f_B(\mu/e) \sim 0.001$ (full simulation)
- f_B (Beam) ~ 0.003 (full simulation of beam)

 f_B are normalized to the u_μ CC rate

Liquid scintillator á la MiniBoone (10% PMT coverage) with 40 kton fiducial mass

- *ϵ_s* ~ 50% (using MiniBoone numbers)
- $f_B(\pi^0 / e) \sim 0.001$ (using MiniBoone numbers)
- $f_B(\mu/e) \sim 0.001$ (using MiniBoone numbers)
- f_B (Beam) ~ 0.003 (full simulation of beam)

Water Čerenkov detector á la SuperK with 400 kton fiducial mass

Extrapolated from the 40 kton detector

Expected event rate for 200 kt x year exposure:

Water Čerenkov, π^+ focused beam							
	Initial	Visible	Single-ring	Tight	No	$m_{\gamma\gamma} < 45$	
Channel	sample	events	100-450MeV	PID	$\mu \to {\rm e}$	(MeV/c^2)	
$ u_{\mu}$ CC	3250	887	578	5.5	2.5	1.5	
$ u_e$ CC	18	12	8.2	8.0	8.0	7.8	
NC	2887	37	8.7	7.7	7.7	7.5	
$ u_{\mu} ightarrow u_{e}$		82.4%	77.2%	76.5%	70.7%	70.5%	
Water Čerenkov, π^- focused beam							
$ u_{\mu}$ CC	539	186	123	2.3	0.7	0.7	
ν_e CC	4	3.3	3.	2.7	2.7	2.7	
NC	687	11.7	3.3	3.	3.	0.3	
$\overline{ u}_{\mu} ightarrow \overline{ u}_{c}$		79.3%	74.1%	74.0%	67.1%	67.1%	

Mezzetto, NUFACT01

The oscillation physics program at the NF

 $\mu^- \rightarrow e^- \nu_e \nu_\mu$ appearance $\nu_{\mu} \rightarrow \nu_{e}$ disappearance ν_{μ} $\nu_{\mu} \rightarrow \nu_{\tau}$ appearance $\overline{\nu_{e}}$ disappearance $\overline{\nu_e} \rightarrow \overline{\nu_\mu}$ appearance $\overline{\nu_e} \rightarrow \overline{\nu_\tau}$ appearance

Ideal detector should be able to measure 12 different processes as a function of L and E_{ν}

 $\begin{cases} v_{\ell}N \to \ell^{-} + hadrons \\ \overline{v}_{\ell}N \to \ell^{+} + hadrons \end{cases} \qquad \begin{cases} v_{\ell}N \to v_{\ell} + hadrons \\ \overline{v}_{\ell}N \to \overline{v}_{\ell} + hadrons \end{cases}$

Plus their charge conjugates with μ^+ beam

> 1. **Particle ID**: charged lepton tags **incoming neutrino flavor** 2. Charge ID: sign of lepton charge tags helicity of incoming

neutrino

3. Energy resolution: Reconstructed event energy is $E_{v}=E_{l}+E_{had}$

4. Various baselines L could help for detector systematics

The Neutrino Factory

$$\left| \mu^{-} \rightarrow e^{-} \overline{V}_{e} V_{\mu} \quad or \quad \mu^{+} \rightarrow e^{+} V_{e} \overline{V}_{\mu} \right|$$

André Rubbia, ETH/Zürich, NOVE, 7/26/01

Predicted event rates at a Neutrino Factory

FNAL-FN-692, Apr 2000		10²º µ⁻ decays			No oscillations assumed	
		Baseline	$\langle E_{\nu_{\mu}} \rangle$	$\langle E_{\bar{\nu}_e} \rangle$	$N(\nu_{\mu} CC)$	$N(\bar{\nu}_e CC)$
Experiment		(km)	(GeV)	(GeV)	(per kt-yr)	(per kt–yr)
NuMI	Low energy	732	3	_	458	1.3
	Medium energy	732	6	—	• 1439	0.9
	High energy	732	12		3207	0.9
CNGS		732	17		2714	1.4
Muon ring	$E_{\mu} (\text{GeV})$				•	
	10	732	7.5	6.6	1400	620
	20	732	15	13	12000	5000
	50	732	38	33	1.8×10^{5}	$7.7{ imes}10^4$
Muon ring	$E_{\mu} (\text{GeV})$				•	
	10	2900	7.6	6.5	91	41
	20	2900	15	13	4 740	330
	50	2900	38	33	11000	4900
Muon ring	$E_{\mu} (\text{GeV})$					
	10	7300	7.5	6.4	14	6
	20	7300	15	13	110	51
	50	7300	38	33	1900	770

However, in addition to the increased neutrino flux, ambitious oscillation physics program requires detectors in the 10's kton range to perform experiment with baselines $L \approx 1000$'s km

André Rubbia, ETH/Zürich, NOVE, 7/26/01

The goal: detect μ^+ , μ^- , \dot{e} , e^- , τ^+ , τ^- and NC !

* **<u>Particle ID</u>**: \Rightarrow via CC interactions

- → Muons: straight-forward, look for penetrating particles, but beware π[±],K[±] and charm decays
- → *Electrons*: *harder*, look for large & "short" energy deposition, need good granularity for e/π^0 separation
- → Taus: hardest, "kink" or kinematical methods (statistical separation), τ→hadrons+v (Br≈60%) look like "NC"

* **Charge ID**: \Rightarrow via magnetic analysis

- → *Muons*: *easy*, muon spectrometer downstream or fully magnetized target
- → Electrons: hardest, need to measure significantly precisely the bending in B-field before start of e.m. shower
- → *Taus*: easy for $\tau \rightarrow \mu \nu \nu$ (Br≈18%), otherwise *difficult*

This has to be implemented on multi-kton detectors... various choices & optimizations considered.

The typical detectors

See also arXiv:hep-ph/0106088
 1. Magnetized iron-scintillator sandwich

2. Large water Cerenkov

3. Emulsion/target sandwich

Liquid argon imaging TPC

4.

Combining all classes \Rightarrow (over-constrained) sensitivity to all oscillations!

Over-constraining the parameters (II)

- ✤ Proof/rule out the existence of sterile neutrinos
- ℜ First observation of $ν_e → ν_τ$

Ability to detect τ appearance is crucial

ICARUS-like 10kton

A. Bueno et.al. , Nucl.Phys.B589 (2000) 577

Measurement/limit on Θ_{13}

ICARUS-like 10kton E =30 GeV

Assuming $\Delta m_{23}^2 > 0 \Rightarrow Matter enhanced v$ oscillation \Rightarrow better measurement at longer distances

δ(sin²2Θ₁₃)=15% (L=2900 km) δ(sin²2Θ₁₃)=10% (L=7400 km)

for $\sin^2 2\Theta_{13} = 0.05$

A. Bueno et.al. , Nucl. Phys. B589 (2000) 577

Ultimate sensitivity on Θ_{13}

- 40 kT Fe-Scintillator detector
- $-E_{\mu} = 50 \text{ GeV}$
- $-10^{21} \mu$ decays
- Include background and detector efficiencies
- —Tight cuts to suppress backgrounds (e.g. charm)

$$\sin^2 2\theta_{13} > \approx 10^{-5}$$

Observing effects related to the δ -phase

Optimizing the search for a complex phase in the leptonic mixing matrix far from trivial

•A priori, the effect depends on L and E in a complicated way (In vacuum, the scaling of the effect with L/E can help an intuitive understanding of the oscillation behavior)

•Measurement precision depends on practical limits on machine power, maximal energy/flux, detector mass

The choice of the baseline is critical: at the time of the Neutrino Factory, there will be already experiments located at a distance of 250 km from JHF and 730 km from CERN and FNAL; if new sites are really needed, due to physics considerations, that would require major new investments for sites and detectors.

$v_e \rightarrow v_\mu$ oscillation probability

Following the conventional formalism for leptonic mixing, CP-/Tviolating effects are observed in *appearance transitions involving the first family*. Therefore, transitions between electron and muon flavors are clearly favored.

These probabilities are composed of three terms:

To fix numbers

Unless otherwise specified, we assume following parameters:

$$\Delta m_{32}^2 = 3 \times 10^{-3} eV^2,$$

$$\Delta m_{12}^2 = 1 \times 10^{-4} eV^2,$$

$$\sin^2 \theta_{23} = 0.5,$$

$$\sin^2 \theta_{12} = 0.5,$$

$$\sin^2 2\theta_{13} = 0.05$$

Consistent with atmospheric data and LMA solar data (assuming maximal mixing).

Looking for effects of $\delta!$

The effect is

For a complex mixing matrix (in vacuum) $P(v_{e} \rightarrow v_{\mu}) = P(\overline{v_{\mu}} \rightarrow \overline{v_{e}}) = 4c^{2}{}_{13}[\sin^{2}\Delta_{23}s^{2}{}_{12}s^{2}{}_{13} + c^{2}{}_{12}(\sin^{2}\Delta_{13}s^{2}{}_{13}s^{2}{}_{23} + \sin^{2}\Delta_{12}s^{2}{}_{12}(1 - (1 + s^{2}{}_{13})s^{2}{}_{23}))]$ $-1/2c^{2}{}_{13}\sin^{2}\theta_{12}s_{13}\sin^{2}\theta_{23}\cos\delta[\cos^{2}\Delta_{13} - \cos^{2}\Delta_{23} - 2\cos^{2}\theta_{12}\sin^{2}\Delta_{12}]$ $+1/2c^{2}{}_{13}\sin\delta\sin2\theta_{12}s_{13}\sin^{2}\theta_{23}[\sin^{2}\Delta_{12} - \sin^{2}\Delta_{13} + \sin^{2}\Delta_{23}]$

- A precision measurement of the transition probability can yield information on the δ-phase provided we know all <u>other parameters very precisely</u>! OR
- 2. We can try to *directly measure a difference of probability between neutrinos or antineutrinos* (T or CP-violation)

 $\sin(\Delta m_{12}^2 L/4E_{\nu}) \sin(\Delta m_{13}^2 L/4E_{\nu}) \sin(\Delta m_{23}^2 L/4E_{\nu})$

1. Only depends on $sin\delta$ and 2. Only depends on L/E_{ν}

Comment with respect to θ_{13}

$$P(v_{e} \rightarrow v_{\mu}) = 4c_{13}^{2}[\sin^{2}\Delta_{23}s_{12}^{2}s_{13}^{2}+c_{12}^{2}(\sin^{2}\Delta_{13}s_{13}^{2}s_{23}^{2}+\sin^{2}\Delta_{12}s_{12}^{2}(1-(1+s_{13}^{2})s_{23}^{2}))] \leftarrow -1/2c_{13}^{2}\sin^{2}\theta_{12}s_{13}\sin^{2}\theta_{23}\cos\delta[\cos^{2}\Delta_{13}-\cos^{2}\Delta_{23}-2\cos^{2}\theta_{12}\sin^{2}\Delta_{12}] + 1/2c_{13}^{2}\sin\delta\sin2\theta_{12}s_{13}\sin^{2}\theta_{23}[\sin^{2}\Delta_{12}-\sin^{2}\Delta_{13}+\sin^{2}\Delta_{23}]$$

$$\Delta CP = \Delta T \propto \sin\theta_{13} \quad \Delta CP \qquad \sin\theta_{13} \quad index and ant \quad af = 0$$

Matter effects $\sin^2 2\theta$ $\sin^2 2\theta_m(D) =$ $\lambda_m = L \times \sqrt{\sin^2 2\theta + \left(\pm \frac{D}{\Delta m^2} - \cos 2\theta\right)^2}$ $\sin^2 2\theta + \left(\pm \frac{D}{\Delta m^2} - \cos 2\theta\right)^2$ + for neutrinos - for antineutrinos $D(E_v) = 2\sqrt{2}G_F n_e E_v \approx 7.56 \times 10^{-5} \quad eV^2 \left(\frac{\rho}{g cm^{-3}}\right) \left(\frac{E}{G eV}\right)$ where For example, for neutrinos: $D \approx \Delta m^2 \cos 2\theta$ $\sin^2 2\theta_m(D) \approx 1$ **Resonance**:

Suppression: $D > 2\Delta m^2 \cos 2\theta$

 $\Rightarrow \sin^2 2\theta_m(D) < \sin^2 2\theta$

Mixing in matter smaller than in vacuum

Effect tends to become "visible" for $L > \approx 1000 \text{ km}$

A way to rescale probabilities...

Behaviour at larger distances...

André Rubbia, ETH/Zürich, NOVE, 7/26/01

So what about the effects of δ ?

$$P(v_e \rightarrow v_\mu) \times E_v^2/L^2$$

1. The E_{v}^{2} term takes into account that the NF likes to go to high energy \Rightarrow damps the part $\Delta m_{21}^2 (L/4E_v) \approx l$ 2. At "high energy", i.e. Δm_{21}^2 $(L/4E_{\rm v}) << 1 \& \Delta m_{32}^2 (L/4E_{\rm v}) << 1,$ there is no more oscillation \Rightarrow change of δ = change of θ_{13} !!! 3. At "high energy", the CP-effect goes like $\cos \delta \Rightarrow$ cannot measure sign of δ

So where is the compromise in L/E?

We must compromise at "medium" energy to

- 1. This means $\Delta m_{21}^2 (L/4E_v) << 1$
- & $\Delta m_{32}^2 (L/4E_v) \approx l$

2. To gain from the $E_{\mu}^{\ 3}$ behavior of the NF

3. To guarantee the possibility to disentangle δ from θ_{13}

If L/E_v is fixed, what should be L and E_v ?

The magnitude of the CP effect (given by J) is known to be unaffected by matter $J = \cos\theta_{13} \sin\delta \sin2\theta_{12} \sin2\theta_{13} \sin2\theta_{23}/8$

Our "choice-point" for CP is at the fixed L/E_{v,max} given by: $E_{v,max} = \frac{2 \times 1.27 \times \Delta m^2 L}{\pi}$

When the neutrino energy becomes close to the MSW resonance, the effective oscillation wavelength increases, hence the CP effect at a fixed distance L becomes less visible.

Hence, we gain until the MSW resonance region and then loose.

$$2\sqrt{2}G_F n_e E_v < \Delta m^2 \cos 2\theta \quad \Longrightarrow \quad 2\sqrt{2}G_F n_e \frac{2 \times 1.27 \Delta m^2 L}{\pi} < \Delta m^2 \cos 2\theta$$

$$L < \frac{\pi \cos 2\theta}{2 \times 1.27 \times 7.56 \times 10^{-5}} eV^2 \left(\frac{\rho}{g cm^{-3}}\right) \approx \frac{1.5 \times 10^4 \, km}{\left(\frac{\rho}{g cm^{-3}}\right)} \approx 5000 \, km$$
Dependence of probability in matter on L/E_{v}

How to experimentally observe the δ -phase?

•
$$\Delta \delta \equiv P(\nu_e \rightarrow \nu_\mu; \delta = \pi/2) - P(\nu_e \rightarrow \nu_\mu; \delta = 0)$$

Compares oscillation probabilities as a function of E_v measured with wrong-sign muon event spectra, to MonteCarlo predictions of the spectrum in absence of CP violation

•
$$\Delta CP(\delta) \equiv P(\nu_e \rightarrow \nu_\mu; \delta) - P(\overline{\nu_e} \rightarrow \overline{\nu_\mu}; \delta)$$

Compares oscillation probabilities measured using the appearance of v_{μ} and v_{μ} , running the storage ring with a beam of stored μ^+ and μ^- , respectively. Matter effects are dominant at large distances

•
$$\Delta T(\delta) \equiv P(\nu_e \rightarrow \nu_\mu; \delta) - P(\nu_\mu \rightarrow \nu_e; \delta)$$

Compares the appearance of v_{μ} and v_{e} in a beam of stored μ^{+} and μ^{-} . As opposite to the previous case, matter effects are the same, thus cancel out in the difference

•
$$\Delta T(\delta) \equiv P(\overline{\nu}_e \rightarrow \overline{\nu}_{\mu}; \delta) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_e; \delta)$$

Same as previous case, but with antineutrinos. This effect is usually matter-suppressed with respect to the neutrino case.

The ΔCP dependence dependence on L/E_v

 $\left| P(v_e \to v_\mu) - P(\overline{v}_e \to \overline{v}_\mu) \right| \times E_v^2 / L^2$ **CP-violation** L=2900 km L=730 km ပ် ပ်) 0.5 $\Delta m_{21}^2 = 1 \times 10^{-4} \text{ eV}^2$ L=7400 km L=2900km $\sin^2 \vartheta_{23} = 0.5$ $\sin^2 \vartheta_{12} = 0.5$ $\sin^2 2\vartheta_{13} = 0.05$ L=7400km $\delta = +\pi/2$ and $-\pi/2$ Matter introduces a large asymmetry, L=730km $\delta = +\pi/2$ independent of δ ✤The dependence to 0.1 the δ -phase is reduced 0 by matter at L=7400 km $\delta = -\pi/2$ -0.1vacuum -0.210² 10³ 10⁴ L/E, (km/GeV)

L/E (km/GeV)

Effects of matter on ΔT

The cut-off of the scaled Tviolating term in matter for $L\approx4000 \text{ km} \text{ destroys L/E scaling.}$ It is useless to go above this distance for T-and CP- violation studies

The above considerations have nothing to do with the necessity of subtracting fake-CP violation due to matter ν - $\overline{\nu}$ asymmetry!

They affect both ΔT and ΔCP .

Measuring ΔT

The comparison of $v_{\mu} \rightarrow v_{e}$ and $v_{e} \rightarrow v_{\mu}$ oscillation probabilities offers a **direct way** to highlight a **complex** component in the mixing matrix, independent of matter and other oscillation parameters.

This measurement is not directly accessible at a neutrino Factory with a conventional detector due to the large v_e background in the beam. It would add a considerable improvement to the physics reach of a Neutrino Factory

Two methods have been proposed to solve the problem of beam V_e background :

- * **Beam polarization** (not very effective; see A.Blondel, A.Bueno, M.Campanelli, A.Rubbia, Monterey NUFACT 00 proceedings)
- ★ Electron charge

MC simulation for electron charge

MC simulations of electrons in a magnetic field have been performed assuming a magnetized liquid argon imaging TPC (Magnetized ICARUS-like detector)

Actual R&D (imaging in B-field) and electron test beams required...

André Rubbia, ETH/Zürich, NOVE, 7/26/01

A large magnet ?

An interesting possibility, to be further understood, is the creation of the B-field over the large volume encompassing the LAr with the help of a very large solenoid

Joule Power (non-superconducting):

$$P = \rho \frac{2(a+b)hB^2}{md\mu_0^2}$$

d=coil thickness, m=#windings, h=height, a=width, b=length

Parameter	
Argon volume	$8 \times 8 \times 16m^3$
Argon mass	$1.4 \mathrm{kton}$
Magnetic field	1.0 T
Current	2000 A
Conductor length	$150 \mathrm{km}$
Resistance	$1 \ \Omega$
Dissipated power	$4 \mathrm{MW}$
Iron mass	5 kton

The proof that it could work

In order to prove L/E scaling, and explore the physical reach in practical examples, we have studied in detail two cases with a 10 kton detector:

•L= 732 km, $E_{\mu} = 7.5$ GeV, $10^{21} \mu$ decays for Δ CP and Δ T

•L=2900 km, E_{μ} = 30 GeV, 2.5×10²⁰ μ decays for Δ CP only

		$E_{\mu} = 7.5 \text{ GeV}$	$E_{\mu} = 30 \text{ GeV}$	[$E_{\mu} = 7.5 \text{ GeV}$	$E_{\mu} = 30 \text{ GeV}$
	Process	L = 732 km	L = 2900 km			Process	$\dot{L} = 732 \text{ km}$	L = 2900 km
		$10^{21} \mu^{-}$	$2.5\times10^{20}~\mu^-$				$10^{21} \ \mu^+$	$2.5\times10^{20}~\mu^+$
	$\nu_{\mu} CC$	41690	36050			$\bar{\nu}_{\mu}$ CC	16570	15962
Non-oscillated	ν_{μ} NC	10700	10300		Non-oscillated	$\bar{\nu}_{\mu}$ NC	5096	5600
rates	$\bar{\nu}_e$ CC	14520	13835		rates	$\nu_e CC$	37570	32100
	$\bar{\nu}_e$ NC	4266	4975			$\nu_e \text{ NC}$	9143	9175
Oscillated	$\bar{\nu}_e \rightsquigarrow \bar{\nu}_\mu CC$	88	50		Oscillated	$\nu_e \rightsquigarrow \nu_\mu \text{ CC}$	445	397
events $(\delta = \pi/2)$	$\nu_{\mu} \rightsquigarrow \nu_{e} \text{ CC}$	258	238		events $(\delta = \pi/2)$	$\bar{\nu}_{\mu} \rightsquigarrow \bar{\nu}_{e} \text{ CC}$	86	46
Oscillated	$\bar{\nu}_e \rightsquigarrow \bar{\nu}_\mu \text{ CC}$	100	54		Oscillated	$\nu_e \rightsquigarrow \nu_\mu \text{ CC}$	438	387
events $(\delta = 0)$	$\nu_{\mu} \rightsquigarrow \nu_{e} CC$	385	333		events $(\delta = 0)$	$\bar{\nu}_{\mu} \rightsquigarrow \bar{\nu}_{e} CC$	86	45
Oscillated	$\bar{\nu}_e \sim \sim \bar{\nu}_\mu CC$	100	55		Oscillated	$\nu_e \rightsquigarrow \nu_\mu \text{ CC}$	289	277
events ($\delta = -\pi/2$)	$\nu_{\mu} \rightsquigarrow \nu_{e} CC$	376	330		events ($\delta = -\pi/2$)	$\bar{\nu}_{\mu} \rightsquigarrow \bar{\nu}_{e} CC$	77	42

 $\tau \rightarrow$ e background: another reason to require low energies!

Assume BG rejection factor for electrons O(10⁻³) for 20% efficiency

André Rubbia, ETH/Zürich, NOVE, 7/26/01

L/E scaling

Direct extraction of the oscillation probabilities (I)

 From the visible energy distributions of the collected events, one can extract the oscillation probabilities

$$P_i(v_e \to v_\mu) \equiv \frac{N_i(ws\mu) - N_i^0(ws\mu)}{\varepsilon_i(p_\mu > p_\mu^{cut})N_i^0(e)}$$

 $N_i(ws\mu)$ = number of wrong - sign muon events in the ith bin of energy $N_i^0(ws\mu)$ = number of background events $\varepsilon_i(p_\mu > p_\mu^{cut})$ = efficiency of the muon threshold cut in that bin $N_i^0(e)$ = number of electron events in absence of oscillations

 μ^+ decays

Similar quantity can be defined for μ^- decays

Direct extraction of the oscillation probabilities (II)

★ Similar quantities for measuring electron appearance

$$P_i(\nu_{\mu} \to \nu_e) \equiv \frac{N_i(wse) - N_i^0(wse)}{\varepsilon_e(1 - p_{conf})N_i^0(rs\mu)}$$

µ⁻ decays

 $N_i(wse) =$ number of wrong - sign electron events in the ith bin of energy $N_i^0(wse) =$ number of background events $\varepsilon_e =$ efficiency for charge identification of electrons $N_i^0(rs\mu) =$ number of right - sign muon events in absence of oscillations

Similar quantity can be defined for μ^+ decays

Direct extraction of the oscillation probabilities (III)

* Binned discriminants for extraction of CP/T effects

For every energy bin *i*.

$$\Delta_{\rm CP}(i) \equiv P_i \Big(v_e \to v_\mu \Big) - P_i \Big(\overline{v}_e \to \overline{v}_\mu \Big)$$

$$\Delta_{\mathrm{T}}(i) \equiv P_{i}(\nu_{\mu} \rightarrow \nu_{e}) - P_{i}(\nu_{e} \rightarrow \nu_{\mu})$$

and similar for $\overline{\Delta}_{\mathrm{T}}(i)$ for antineutrinos

* For checking matter-effects, we can define

$$\Delta_{\rm CPT}(i) \equiv P_i \Big(v_\mu \to v_e \Big) - P_i \Big(\overline{v}_e \to \overline{v}_\mu \Big)$$

Binned CP violation discriminant

10 kton detector

The $v_e \rightarrow v_\mu$ and $\bar{\nu}_{e} \rightarrow \bar{\nu}_{u}$ oscillation probabilities obtained from wrong-sign muons.

Will be different from zero due to matter effects, even for $\delta = 0$

At L=732 km, matter effects are smaller, and large negative values of δ can reverse the sign of ΔCP

Expected statistical errors only

Binned ΔT discriminant

The difference in probability for wrongsign muons and wrong-sign electrons is a direct proof of Tviolation. Matter effects are the same, and cancel out in the difference.

> L=732 km 10²¹ µ decays Expected statistical errors only

Defining sensitivities to the \delta-phase

* One can define χ^2 -significance of the effects to set sensitivity contours

For CP-discriminant:

$$\chi_{CP}^{2} \equiv \sum_{i} \frac{\left(\Delta_{CP}(i,\delta) - \Delta_{CP}(i,\delta=0)\right)^{2}}{\left(\sigma\left(\Delta_{CP}(i,\delta)\right)\right)^{2}}$$

For T-discriminant:

$$\chi_{T}^{2} \equiv \sum_{i} \frac{\left(\Delta_{\mathrm{T}}(i,\delta) - \Delta_{\mathrm{T}}(i,\delta = 0)\right)^{2}}{\left(\sigma\left(\Delta_{\mathrm{T}}(i,\delta)\right)\right)^{2}} + \sum_{i} \frac{\left(\overline{\Delta}_{\mathrm{T}}(i,\delta) - \overline{\Delta}_{\mathrm{T}}(i,\delta = 0)\right)^{2}}{\left(\sigma\left(\overline{\Delta}_{\mathrm{T}}(i,\delta)\right)\right)^{2}}$$

L/E_{μ} scaling at work for direct CP measurement

90% contours in the Δm_{12}^2 - δ plane, obtained translating the probability differences into $\Delta \chi^2$

The sensitivity for the two cases is similar, proving the validity of the L/E_{μ} scaling at constant machine power. Actually, the shorter distance is even better due to the smaller influence of matter effects

Direct T-violation measurements sensitivity

Conclusion

- The current round of LBL experiments will be a confirmation of the SuperKamiokande results.
- * The *next discovery* will come from the exploration of the so-called θ_{13} angle, the connection between Sun and atmospheric oscillations.
 - → This is a challenging task
 - → It requires new high intensity beams, i.e Superbeams
- ★ In case of Superbeams, one has to take into account
 - → intrinsic beam backgrounds
 - → detector-associated backgrounds
- * One can hope to explore the δ-phase, but only if θ₁₃ and solar LMA solution allow it...
 - → One approach is the JHF(phase II)-HyperK(1Mton) detector
 - → Our preferred approach relies on the cleanliness of the neutrino factory coupled to a detector capable of *measuring the electron charge*. This would add a *considerable improvement* of a NF for CP and T violation studies.