Status of studies of an ICANOE-like detector

at the Neutrino Factory

A.Bueno, M.Campanelli, A.Rubbia ETH Zurich

Antonio Bueno & Mario Campanelli & André Rubbia, ETH/Zurich February 2000

ICANOE at the Neutrino Factory

ICANOE is one of the two large detectors proposed for the CERN-Gran Sasso beam.

- * Liquid Argon target for fine-grained event imaging
- * Calorimeter modules for tail-catching and muon charge+momentum determination

\rightarrow Good detector for a Neutrino Factory

Possible baselines

With the high fluxes foreseen at the Neutrino Factory we can think of very long baselines:

Ring location	Distance to GS	Mean density
CERN	732 km	2.8 g/cm ³
Canary	2900 km	3.2 g/cm ³
FNAL	7400 km	3.7 g/cm ³
KEK	8815 km	4.0 g/cm ³

Event rates for a 10 kton detector

Rates					
		L=732 km	L=2900 km	L=7400 km	
	$\nu_{\mu} CC$	226000	14400	2270	
μ^-	$\nu_{\mu} \text{ NC}$	67300	4120	680	
10^{20} decays	$\bar{\nu}_e \ \mathrm{CC}$	87100	5530	875	
	$\bar{\nu}_e \mathrm{NC}$	30200	1990	300	
	$\bar{\nu}_{\mu}$ CC	101000	6380	1000	
μ^+	$\bar{\nu}_{\mu}$ NC	35300	2240	350	
10^{20} decays	$\nu_e CC$	197000	12900	1980	
	$\nu_e \mathrm{NC}$	57900	3670	580	

No oscillations

 E_{μ} =30 GeV

No polarization

No beam divergence

Neutrino Oscillations

Experimentally, we can study in principle 12 independent processes:

Oscillation probabilities:

$$\mu^{-} \rightarrow e^{-} \overline{v}_{e} \qquad v_{\mu}$$

$$v_{e} \rightarrow e^{-} \quad appearance$$

$$v_{\mu} \rightarrow \mu^{-} \quad disappearance$$

$$v_{\tau} \rightarrow \tau^{-} \quad appearance$$

$$\overline{v}_{e} \rightarrow e^{+} \qquad appearance$$

$$\overline{v}_{\mu} \rightarrow \mu^{+} \qquad disappearance$$

$$\overline{v}_{\tau} \rightarrow \tau^{+} \qquad appearance$$
Plus their charge conjugates with μ^{+} beam
$$P(v_{e} \rightarrow v_{e}) = 1 - \sin^{2} 2\theta_{13} \Delta_{32}^{2}$$

$$P(v_{e} \rightarrow v_{\mu}) = \sin^{2} 2\theta_{13} \cos^{2} \theta_{23} \Delta^{2}_{32}$$

$$P(v_{\mu} \rightarrow v_{\mu}) = \sin^{2} 2\theta_{13} \cos^{2} \theta_{23} \Delta^{2}_{32}$$

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - 4\cos^{2} \theta_{13} \sin^{2} \theta_{23} (1 - \cos^{2} \theta_{13} \sin^{2} \theta_{23}) \Delta^{2}_{32}$$

$$P(v_{\mu} \rightarrow v_{\tau}) = \cos^{4} \theta_{13} \sin^{2} 2\theta_{23} \Delta^{2}_{32}$$

$$P(v_{\mu} \rightarrow v_{\tau}) = 1 - 4\cos^{2} \theta_{13} \cos^{2} \theta_{23} (1 - \cos^{2} \theta_{13} \cos^{2} \theta_{23}) \Delta^{2}_{23}$$

$$P(v_{\tau} \rightarrow v_{\tau}) = 1 - 4\cos^{2} \theta_{13} \cos^{2} \theta_{23} (1 - \cos^{2} \theta_{13} \cos^{2} \theta_{23}) \Delta^{2}_{23}$$

Event classes in ICANOE-like detector

Detector able to identify γ , e, μ and hadrons, charge is measured only for muons.

Events can be classified into four classes, according to the leading particle:

*Electron of any charge
*Muons of same sign as those circulating in ring
*Muons of opposite sign (oscillation, or bg)
*No leading leptons

Observed Spectra

Neutrino oscillations visible in the spectra:

Detector simulation

ICANOE fully simulated for CNGS studies.
For this study, events fully simulated and passed through ICANOE fast simulation.

$$\frac{\sigma(E)_{e.m.}}{E} = \frac{3\%}{\sqrt{E(GeV)}} \quad \frac{\sigma(E)_{had}}{E} = \frac{20\%}{\sqrt{E(GeV)}} \quad \frac{\sigma(P_{\mu})}{P_{\mu}} = 20\%$$
$$\frac{\sigma(\theta)}{\theta} = 130 mrad / \sqrt{p(GeV)}$$

Proper neutrino cross section used

Charged π^{\pm}, K^{\pm} decay into μ^{\pm} for BG treatment

Fitting procedure

Parameters are determined by fit of visible energy from the different classes.

We use:

- $\star~\chi^2$ for >40 events in bin
- \star -log **L** \langle 40 events in bin

Beam systematics: 2% uncorrelated (25 bins) Background added in fit Earth density and oscillation parameters can

vary in the fit or be fixed to reference value

Parameters used

For this study, we consider as our default:

```
* 2*10<sup>20</sup> decays of 30 GeV (μ<sup>+</sup>+μ<sup>-</sup>)
* 3-family mixing with:
→ Δm<sup>2</sup><sub>23</sub>=(3.5, 5, 7) * 10<sup>-3</sup> eV<sup>2</sup>
→sin<sup>2</sup>θ<sub>23</sub>=0.5
→sin<sup>2</sup>2θ<sub>13</sub>=0.05
* 10 kton ICANOE-like detector
```

Goals of Experiments at NUFACT

For second generation long baseline experiments, the main goals will be:

★ Precise determination of ∆m²₂₃ and Θ₂₃
★ Measurement of Θ₁₃
★ Study of matter effects
★ Study of CP violation

Precise determination of $\Delta m_{23}^2 \Theta_{23}$

Assume $\Theta_{13} = 0 \Rightarrow 2$ -family $v_{\mu} \rightarrow v_{\tau}$ oscillations

Disappearance dip at large distances for right-sign μ :

★ Position: Δm^2_{23} ★ Height: Θ_{23}

Antonio Bueno & Mario Campanelli & André Rubbia, ETH/Zurich February 2000

Right-sign muon disappearance

Sensitivity for Δm^2_{23} , θ_{23} measurements

Error on $\Delta m_{23}^2 = 1\%$

Antonio Bueno & Mario Campanelli & André Rubbia, ETH/Zurich February 2000

Beam systematic

Statistical improvements

A factor 10 more statistics can still improve the measurement at very long distances

(2% systematics)

3-family mixing

With $\Theta_{13} \neq 0$, all flavors mix. Assuming $\Delta m_{23}^2 > 0$, oscillations involving v_e (\overline{v}_e) are enhanced (suppressed) by MSW interactions with matter

Effect can be spectacular for wrong-sign muons

Contributions to wrong-sign muons:

• $v_e \rightarrow v_\mu$

$$\bullet\nu_e\!\!\rightarrow\!\!\nu_\tau\!\!\rightarrow\!\!\tau\!\!\rightarrow\!\!\mu$$

Sensitivity to θ_{13}

Sensitivity to Θ_{13} for different values of Δm_{23}^2 , using all classes and kinematics.

Similar sensitivity for L=2900 km.

2 orders of magnitude better than ICANOE at CNGS

Measurement of Θ_{13}

Θ₁₃ mainly determined by wrong-sign muons.
 Including electrons, NC and kinematics for τ improves sensitivity by 30%

Only muons

All classes + kinematics

Earth density

Resonance position depends on $\Theta_{13} \Delta m^2{}_{13}, \rho$

$$E_{v}^{res} \approx \frac{1.32 \times 10^4 \cos 2\theta_{13} \Delta m_{23}^{2} (eV^2)}{\rho(g/cm^3)}$$

•For small θ_{13} , cos $2\theta_{13} \approx 1$

• Δm_{23}^2 measured independently by right-sign muon disappearance

→The resonance position, visible in wrong-sign muons, gives a measurement of the mean density

Determination of ρ and Θ_{13}

The determination of ρ is not very correlated to that of the other oscillation parameters, e.g. θ_{13}

Determination of ρ and Δm^2_{23}

Density determination

Fitting the density alone, a 10% accuracy can be achieved, even leaving free all oscillation parameters

Influence of density

Density fixed to true value: $\sigma(\sin^2 2\theta_{13})=0.0071$ $\sigma(\sin^2 \theta_{23})=0.044$

Density left free in the fit:

 $\sigma(\sin^2 2\theta_{13}) = 0.0074$ $\sigma(\sin^2 \theta_{23}) = 0.050$

Influence of matter on CP violation under study

Antonio Bueno & Mario Campanelli & André Rubbia, ETH/Zurich February 2000

Conclusions

An ICANOE-like detector at the Neutrino Factory, provides:

- Identification of different event classes
- →Precise determination of Δm_{23}^2 and θ_{23}
- \rightarrow Improved sensitivity or a measurement of θ_{13}
- \rightarrow Study of matter effects and determination of ρ
- * Event simulation done with background, exclusive τ decays, beam systematics
- Matter effect can be directly measured
 Work in progress for CP violation studies