SUPER-ICANOE

Presented by Antonio Bueno (ETHZ)

ICARUS Collaboration

F. Arneodo^a, B. Baiboussinov^b, A. Badertscher^c, P. Benetti^d, E. Bernardini^a, A. Borio di Tigliole^e,
P. Brunetti^f, A. Bueno^c, E. Calligarich^d, M. Campanelli^c, C. Carpanese^c, D. Cavalli^f, F. Cavanna^g,
P. Cennini^h, S. Centro^b, A. Cesana^e, D. Cline^c, R. Dolfini^a, A. Ferrari^{f,h}, A. Gigli Berzolari^a,
C. Mattheyⁱ, F. Mauri^d, D. Mazza^g, L. Mazzone^d, G. Meng^b, C. Montanari^d, G. Nurzia^g,
S. Otwinowski^c, O. Palamara^a, D. Pascoli^b, A. Pepato^b, S. Petrera^g, L. Periale^j, G. Piano Mortari^g,
A. Piazzoli^d, P. Picchi^{j,k,l}, F. Pietropaolo^b, T. Rancati^f, A. Rappoldi^d, G. L. Raselli^d, D. Rebuzzi^d,
J. P. Revol^h, J. Rico^c, M. Rossella^d, C. Rossi^g, A. Rubbia^c, C. Rubbia^d, P. Sala^{f,h}, D. Scannicchio^d,
F. Sergiampietri^m, M. Terrani^e, P. Torre^d, S. Ventura^b, C. Vignoli^d, H. Wangⁱ, J. Wooⁱ and Z. Xu^d

a Lab. Naz. del Gran Sasso (INFN), s.s. 17bis, km 18.910, Assergi (AQ), Italy b Dipartimento di Fisica e INFN, Università di Padova, via Marzolo 8, Padova, Italy c Institute for Particle Physics, ETH Hoenggerberg, CH-8093 Zrich, Switzerland d Dipartimento di Fisica e INFN, Università di Pavia, via Bassi 6, Pavia, Italy e Politecnico di Milano (CESNAF), Università di Milano, via Ponzio 34/3, Milano, Italy f Dipartimento di Fisica e INFN, Università di Milano, via Celoria 16, Milano, Italy g Dipartimento di Fisica e INFN, Università dell'Aquila, via Vetoio, L'Aquila, Italy h CERN, CH-1211 Geneva 23, Switzerland i Department of Physics, UCLA, Los Angeles, CA 90024, USA j ICGF-CNR, Corso Fiume 4, Torino, Italy k Dipartimento di Fisica e INFN, Università di Torino, via Giuria 1, Torino, Italy l Laboratori Nazionali dell'INFN di Frascati, via Fermi 40, Frascati (RM), Italy m INFN Pisa, via Livornese 1291, San Piero a Grado (PI), Italy

NNN00-Fermilab Nucleon Decay and Neutrino Detector Workshop August 7-8, 2000

Fermi National Accelerator Laboratory Batavia, Illinois, USA

New challenges

- High-energy physics is now facing the new challenge of thinking of a new generation of experiments beyond the current accelerator & non-accelerator ones in order to:
 - Improve significantly the sensitivity to nucleon decay in the range of 10³⁴ years
 - Allow transcontinental very long-baseline (L>1000km) oscillations experiments with full event reconstruction
 - Continue to observe solar, atmospheric neutrinos with higher statistics & better resolution

Need to further develop high-granularity detectors with masses in the range of ten's-of-ktons !

Liquid argon imaging TPC

• The LAr TPC technique is based on the fact that ionization electrons can drift over large distances (meters) in a volume of purified liquid Argon under a strong electric field. If a proper readout system is realized (i.e. a set of fine pitch wire grids) it is possible to realize a massive "electronic bubble chamber", with superb 3-D imaging.

ICARUS state of the art

• After several years of R&D and prototyping, the ICARUS collaboration is now realizing the first **600 ton module**, which will be installed at Gran Sasso in the year 2001.

ICARUS 15 ton (10m³) prototype

- A recent major step of the R&D program has been the construction and operation of a 10m³ prototype
 - ① Test of the cryostat technology
 - ② Test of the "variablegeometry" wire chamber
 - **③ Test of the liquid phase** purification system
 - ④ Test of trigger via scintillation light
 - **5 Large scale test of final readout electronics**

→ First operation of a 15 ton LAr mass as an actual "detector"

T15 installation @ LNGS (Hall di Montaggio)

The ICARUS T600 module

Under construction

The ICANOE T1400 module

SuperICANOE, NNN00

Design considerations

What we get for 30 ktons:

•Number of targets for nucleon stability:

 -2×10^{34} nucleons $\Rightarrow \tau_p (10^{33} \text{ years}) > 3.6 \times T(\text{yr}) \times \epsilon @ 90 \text{ C.L.}$

•Neutrino factory:

 $-7000 \nu_{\mu} CC per 10^{20} \mu @ L = 7400 km$

•Atmospheric:

- 6000 atm CC events / year
- $-\approx 30 v_{\tau} CC$ /year from oscillations

•Solar:

 $-\approx$ **50000** solar neutrinos / year @ E > 5 MeV

Of course, MASS is not the whole story! We want the factor MASS × EFFICIENCY high and BACKGROUNDS low!!!

Design option: Modular

• The ICARUS detector can be built in **very large sizes** and after having been developed in laboratory units, the liquid argon technology is now fully industrialized

⇒ Modules can be "ordered" to the producer

- As a case study, the simplest way to extend the mass is to **replicate** a large number of times the current ICANOE supermodule
 - ⇒ Conservative cost estimate (from ICANOE proposal):

≈ 13 M\$ / supermodule (1400 tons)

⇒ Total for 24 supermodules:

$$pprox$$
310 M\$ \Rightarrow 34 ktons

• **Cost reduction** possible by further geometry optimization

⇒ c.f. SUPERICARUS proposal CERN/SPSC 98-33

• Other options: fill existing cavern e.g. SuperK ?

Possible baseline configuration (side view) ≈ 60 m LAr trometer Imaging <u>spectrometer</u> spectrometer 16 m 16m pect 5 Ц H. T 3 mTotal fiducial mass: 34 ktons **SuperICANOE** wires/supermodule: 53248 (case study for channels/supermodule: 26624 this workshop)

maximum drift length:

4 m

SuperICANOE, NNN00

Possible baseline configuration

(front view)

Three arrays of eight supermodules: 24 supermodules in total

SuperICANOE, NNN00

Design limitations?

- Detector is a surface detector, so gain in volume/surface ratio
 Like Water Cerenkov
- Practical limitations for size of monolithic supermodule (1000 m³ for ICANOE)
 - ⇒ Drift length
 - Can one drift longer than currently assumed 4 meters? \Rightarrow R&D

⇒ Readout-wires length is not a limiting factor

- Variable geometry chambers (spring system tested in T15)
- Diameter 150 µm
- Eventually, limited by wire capacitance (noise)

⇒ Quantity of Argon

- \approx 30 kt is equivalent to the Italian production in one year
- However, Argon not "used", just "stored" in the experiment

⇒ Safety issues

• In critical area like LNGS lab, a monolithic volume of 1000 m³ seems to be a limit ⇒ this constraint most likely relaxed in other sites

Physics potential (I)

Proton decay

*****Large variety of decay modes accessible

⇒ study branching ratios free of systematics

Background free searches for even for 30 years running!!! ⇒ *linear gain in sensitivity with exposure*

***In case of negative results:**

 $\Rightarrow \tau_{p} > O(10^{34-35} \text{ years})$ in 10 years of data taking

Atmospheric neutrinos

***Observation free of experimental biases!** —Detection down to production thresholds —Complete event final state reconstruction —Measurement of all neutrino flavors in all modes (CC & NC)

*Excellent resolution on L/E reconstruction
*Direct τ appearance search

Physics potential (II)

Neutrinos from accelerators (v factory)

- ***Precise measurement of** Δm_{23}^2 , Θ_{23} , Θ_{13}
- ***** Matter effects, sign of Δm_{23}^2
- \circledast First observation of $\nu_e \rightarrow \nu_\tau$ (unitarity of mixing matrix)
- **%CP violation**

Solar neutrinos

- ***Energy threshold: 5 MeV**
- *****Large statistics, high precision measurements
- **%Experimental signal**

Absorption Elastic

$$V_e + {}^{40}\!Ar \rightarrow e + {}^{40}\!K^*$$
 $V_e + e \rightarrow V_e + e$

Supernovae

Thanks to excellent
tracking and particle
id capabilitiesLAr unique
tool forExtremely efficient
background rejection
High detection efficiency

$\mathbf{p} \rightarrow \mathbf{e}^+ \pi^0$ decay mode

Exposure: 1000 kton x year

Cuts		$e + \pi^0$	$e + \pi^0$	$\nu_e \text{ CC}$	$\bar{\nu}_e \text{ CC}$	ν_{μ} CC	$\bar{\nu}_{\mu}$ CC	ν NC	$\bar{\nu}$ NC
		Argon	Oxygen						
Initial		100%	100%	59861	11707	106884	27273	64705	29612
One π^0		54%	70%	5277	1696	11160	4388	6223	2278
One e		54%	70%	5277	1696	7	< 1	<1	< 1
$T_p < 100 \text{ MeV}$		53%	68%	2505	1256	< 1	<1	< 1	< 1
0.8 < Inv Mass < 1.05 GeV		38%	53%	306	204	< 1	< 1	<1	<1
Total Momentum $< 0.25 \text{ GeV}$		19%	24%	1	< 1	< 1	< 1	< 1	< 1
Overall efficiency in Argon Overall efficiency in Oxygen									
Full simulation of backgrounds									

$p {\rightarrow} K^+ \, \overline{\nu} \, decay \, mode$

Exposure: 1000 kton x year

Cuts	$K + \bar{\nu}$	ν NC	$\bar{\nu}$ NC
Initial	100%	64705	29612
No primary π^{\pm}	99.4%	55481	26033
No primary π^0	98.7%	48397	23265
Only one kaon	98.5%	108	22
Total Energy $< 0.65 \text{ GeV}$	85%	< 1	< 1

Full simulation of backgrounds

Limits on proton mean life (τ_p)

10 years @ SuperICANOE

Exposure: $300 \ kton \times year$									
	$p \rightarrow e^+ \pi^0$		$p \to K^+ \bar{\nu}$						
	Efficiency (%)	τ_p (years)	Efficiency (%)	τ_p (years)					
No nucl. reinteractions	42	1.5×10^{34}	85	3.1×10^{34}					
Nucl. reinteractions (FLUKA)	19	6.8×10^{33}	85	3.1×10^{34}					
$Exposure: 1000 \ kton \times year$									
	$p \rightarrow e^+ \pi^0$		$p \to K^+ \bar{\nu}$						
	Efficiency (%)	τ_p (years)	Efficiency (%)	τ_p (years)					
No nucl. reinteractions	42	5.0×10^{34}	85	1.0×10^{35}					
Nucl. reinteractions (FLUKA)	19	2.3×10^{34}	85	1.0×10^{35}					

30 years @ SuperICANOE

Atmospheric direct τ appearance

Event classes at a v factory

Ideal detector able to measure 12 different oscillation processes

A. Bueno, M. Campanelli, A. Rubbia, hep-ph/0005007

Muon identification

μ momentum resolution: Contamination (%) ⇒ 20% for a 3m long Fe L=1m spectrometer with B=1T Wrong Sign (0 Wrong sign contamination ⇒ Charge confusion: ~10⁻⁵ Large detection efficiency 10 for low energy beam L=3m 10 \Rightarrow µ detection threshold (dE/dx = 240 MeV/m)

Conclusions

- Liquid Argon imaging technology allows
 - ⇒ Very high granularity
 - ⇒ Very large mass detectors
 - Bubble-chamber-like detector
- It has been *successfully tested* on large prototypes (501, 3T, 15Ton prototype)

⇒ Has now entered the fully industrialized era (T600)

• Timescale:

⇒ T600 first cool-down planned before end 2000 ⇒ ICANOE proposal been discussed @ CNGS

• The road to SuperICANOE is open...