January 16-18, 2002, CERN, Geneva, Switzerland

from high intensity beam

Special thanks to A. Bueno, I. Gil-Botella, S. Navas-Concha, C. Rubbia, P. Sala

Liquid Argon TPC and R&D

André Rubbia (ETH Zürich)

ICARUS Collaboration

Large detectors for proton decay, supernovae and atmospheric neutrinos and low energy neutrinos

ICARUS Liquid Argon TPC

The LAr TPC technique is based on the fact that ionization electrons can drift over large distances (meters) in a volume of purified liquid Argon under a strong electric field. If a proper readout system is realized (i.e. a set of fine pitch wire grids) it is possible to realize a massive "electronic bubble chamber", with superb 3-D imnoing

Liquid Argon TPC properties

- High density, heavy ionisation medium
- $\rho = 1.4 \text{ g/cm}^3$, X₀=14 cm, $\lambda_{int} = 80 \text{ cm}$
- Extremely high resolution detector
- 3D image 3x3x0.6 mm³ (400 ns sampling)
- Continuously sensitive
- Self-triggering or through prompt scintillation light
- Stable and safe
- Inert gas/liquid
- High thermal inertia (230 MJ/m³)
- Relatively cheap detector
- Liquid argon is cheap, it is "stored" not "used" in the experiment
- TPC : no of channels proportional to surface
- **Cryogenic temperature**
- T = 88K at 1 bar
- High purity required for long-drift time
- 0.1 ppb of O₂ equivalent for 3 ms drift
- No signal amplification in liquid
- NNN02, André Rubbia, Jan 2002 1 m.i.p. over 2 mm yields 10000 electrons

ICARUS bibliography

- ._____ Frascati (Italy, 1985). The ICARUS Collaboration: ICARUS: a proposal for the Gran Sasso Laboratory Experiment proposal, INFN/AE-85/7,
- 2 M. Baldo-Ceolin et al. (32 authors): ICARUS I: an optimized, real-time detector of solar neutrinos, Experiment proposal, LNF-89/005 (R), 10 Feb. 1989
- ω Sasso laboratory (Volume I), Experiment proposal, LNGS-94/99-I, Sept. 1993 P. °Cennini et al. (53 authors), ICARUS II: second generation proton decay experiment and neutrino observatory at the Gran
- 4. Sasso laboratory (Volume II), Experiment proposal, LNGS-94/99-II, May 1994. P. Cennini et al. (57 authors), ICARUS II: second generation proton decay experiment and neutrino observatory at the Gran
- $\dot{\boldsymbol{\omega}}$ proposal, LNGS-95/10, May 1995 P. °Cennini et al. (59 authors):, A first 600 ton ICARUS detector installed at the Gran Sasso laboratory, Addendum to
- 6. ICARUS detector, Experiment proposal, CERN/SPSLC/96-58, SPSLC/P304, Dec. 1996 P. Cennini et al. (70 authors):, A search programme for explicit neutrino oscillations at long and medium baselines with the
- .7 P. °Cennini et al. (70 authors):, ICARUS-Like technology for long baseline neutrino oscillations, Experiment proposal, CERN/SPSC 98-33, Oct. 1998
- ∞ experiment, Experiment proposal, INFN/AE-99-17, CERN/SPSC 99-25, SPSC/P314, Sep. 1999 F. Arneodo et al. (112 authors), ICANOE: a proposal for a CERN-GS long baseline and atmospheric neutrino oscillation
- 9. P21/99-ADD1, CERN/SPSC 99-39, SPSC/P314 Add.1, Nov. 1999. F. Arneodo et al. (109 authors), ICANOE: preliminary techincal design & cost estimate, Addendum to proposal, LNGS-
- 10. F. Arneodo et al. (123 authors), ICANOE: answers to questions and remarks concerning the ICANOE project, Addendum to proposal, LNGS-P21/99-ADD2, CERN/SPSC 99-40, SPSC/P314 Add.2, Nov. 1999.
- 11. at the Gran Sasso Laboratory., INITIAL PHYSICS PROGRAM, ICARUS-TM/2001-03 LNGS P28/01 LNGS-EXP 13/89 F. Arneodo et al., THE ICARUS EXPERIMENT: A Second-Generation Proton Decay Experiment and Neutrino Observatory

add.1/01 NNN02, André Rubbia, Jan 2002

RUS

LAr filling, RUN

Electronic & DAQ installation

First cryostat delivery

Pavia (Feb 29, 2000)

Ext. insulation,

easy transportability technology allows The developed (relatively)

module (cryostat & internal detector) can be fully defined experimental assembled and then

shipped to the

beam site

ICARUS T600 prototype

ICARUS T600: the existing detector

¥ Complete T600 detector layout currently being finalized (2002): ¥A first semimodule of the T600 prototype has been built (97-00) and fully successfully tested (on surface, Apr.-Aug. 2001). **Cryogenics**:

Internal detector : LAr TPC (4 chambers), tot. 58.000 wires cryostat divided in 2 half-modules (about 20X4X4 m³) passive insulation (LN₂ cooling system) LAr purifier (forced LAr re-circulation) + GAr purifier

TPC: 3 planes at 60°, 3 mm pitch, 3 mm space between planes

1.5 m max drift distance (TPC-Cathode) [i.e. 1 ms drift time at nominal E.F. of 500 V/cm]

60 PMT s per half-module (UV sensitive by w.l.s. deposition,

Slow-control 10 fl, Q.E. 10%, 5 MeV min. detectable energy deposition).

High-voltage system

Readout electronics: individual wire waveform recorder

DAQ Analog Board (Amplifiers) + Digital Board (ADC conv. & hit finding)

Assembly of the T600 internal detector (Mar-Jul 2000)

NNN02, André Rubbia, Jan 2002

ICARUS T600 prototype

Slow control sensor (behind wire planes)

T600 half-module technical run (2001)

Cryostat emptying: 7 days True running time: 68 days Cooling: 14 days LAr filling: 10 days Clean up (vacuum): 10 days * 3 days to reach -178 °C ★ 3 days to reach 10⁻⁴ mbarL ★ 11 days for pre-cooling (down to -50 °C) ★ 7 days to find and recover the leaks Tot. 109 days Clean up **Cryostat emptying** LAr filling Cooling running time

demonstrated to behave as expected !

Detector has been carefully monitored during all phases of running and

V0 candidate

wire coordinate

drift coordinate 80 cm Run 308 Event 160 Collection view **Hadron** interaction 270 cm

Transportation and re-mounting at GranSasso Initial physics program: hep-ex/0103008 underground facility during 2002.

ICARUS T600+2xT1200 in LNGS proposal

LNGS-EXP 13/89 add.2/01

NNN02, André Rubbia, Jan 2002

NNN02, André Rubbia, Jan 2002

Muon mo resolution

Muon acceptance

 $ightarrow v_{\mu}$ CC events generated uniformly inside one T1200 module with spectrum from CNGS

Muon spectrometer: two 8x8 m², 3 m long Fe blocks with two middle drift tubes planes

- **1.** Initial sample inside LAr
- 2. Muons that do not stop inside LAr
- Muon inside Fe spectrometer transverse dimensions
- 4. Muon that do not stop inside iron

ICCCC

NNN02, André Rubbia, Jan 2002

Is this the subject of the workshop?

- Large detectors...
- T600 in 2002, 3 kton planned for 2005
- Bigger masses envisageable for >2005
- for proton decay...
- Background free searches, unbiased in all decay channels
- Linear gain in sensitivity with exposure up to 1 Megaton×yr
- The right way to go into the unkown...
- supernovae (and solar!)...
- Sensitive to $v_e(anti-v_e)$ only via CC reaction and all other flavors via ES
- Instrinsic threshold down to 150 KeV deposited energy, actual threshold for solar (≈5 MeV on primary electron) dictated by backgrounds
- and atmospheric neutrinos...
- All neutrino flavors (including v_{τ}) down to kinematical thresholds
- Excellent event classification, NC/CC, L/E resolution
- and low energy neutrinos from high intensity beams
- Excellent e and μ identification
- Excellent π^0 background rejection
- Electron charge accessible if LAr embedded in B-field

Scaling the ICARUS modules

- As already discussed in the SuperI document (CERN/SPSC 98-33, SPSC/M620) the ICARUS modules could be scaled up in order to more easily and affordably reach larger masses
- For example, scaling up the ICARUS T1200 module proposed for LNGS by a factor 2 in each direction, we obtain

$2^3 \times T1200 \approx T100000$

 $T600 \rightarrow T1200 \rightarrow \dots$). i.e. a 10 kton basic building block module (3t \rightarrow T15 \rightarrow

This extrapolation seems conceivable within a timescale beyond 2005

Drift velocity, H.V. and signal attenuation

- Working drift field
 E=500 V/cm ⇒ drift velocity
 v_d=1.6 mm/μs
- H.V_{drift}=300kV,
- maximum drift time t_{max}=3.75 ms
- Requires high level of purity in order to avoid charge attenuation
- Measured electron lifetime: 50 liter TPC τ > 10 ms, T600 prototype (after ≈10 weeks): τ > 1.8 ms, was still growing

NNN02, André Rubbia, Jan 2002

Maximum electron lifetime: 1800 µs

Achieved electr

Which type of design ?

- Bigger LAr masses and three possible layouts:
- A) LAr only
- B) LAr + external spectrometer
- C) Magnetized LAr
- LAr in magnetic field was already discussed in the past, as part of the original ICARUS proposals
- The building of the magnetized LAr is essentially an engineering and cost problem
- L3 magnet could roughly enclose an ICARUS T1200
- CMS and ATLAS are building very large magnets
- Superconducting or standard is an engineering choice

Which detector configuration ?

- We can a priori conceive the « do it all » detector.
- See LANNDD
- Realistically, we can consider different detector to achieve, e.g. configurations, depending on the kind of physics we want
- Non-accelerator physics,
- proton decay, atmospheric, SN, solar *3xT10000, magnetic field not mandatory
- –<u>Accelerator physics:</u>
- Superbeam or Neutrino factory
- *2xT10000 with external spectrometer,
- Neutrino factory and *electron charge* for direct I-violation search

*1xT10000 immersed in B-field

Drift coordinate

 $(\vec{B} out of slide)$

mulated v_u CC event in B=0.1

Measured space point resolu

Irack mom entum resolution

Track momentum determination by magnetic deflection in Liquid Argon dominated

NNN02, André Rubbia, Jan 2002

NNN02, André Rubbia, Jan 2002

<u>0</u>

Hard initial bremsstrahlung γ 's ... the energy is reduced \rightarrow low P \rightarrow small curvature radius

Given the interesting level of charge confusion required (see later), this appears to be only practically conceivable for electron energies $\langle \approx 5 \text{ GeV} \rangle$ and requires a field of $\approx 1 \text{ T}$

Vacuum magnetic field (free electron drift properties, ability to measure sagitta, etc and a 2 m x 0.35 m Liquid Argon cylinder to understand the performance of liquid Argon imaging TPC in a We are building a prototype of Liquid Argon TPC in a magnetic field. Uses a 0.5 T magnetic field Liquid Argon ($\phi = 35$ cm) Nitrogen bath scintillators 0000000 CCCCCC

etic

tield
TPC in I etic field

p→vK+ decay Nucleon decay searches Q+ n→vK⁰decay ם ↓ × ۲° · π⁺π⁻ $p \rightarrow e^+ \pi^0$ - 24

background rejection Extremely efficient

High detection efficiency

Bias-free, fully exclusive channel searches!

Nucleon decay analyses

See ICARUS-TM/2001/04 for details

- Nucleon decay searches are an integral part of ICARUS physics program
- Detailed simulation of nucleon decays in Argon, including nuclear effects
- Full simulation of the atmospheric neutrino background up to the megaton-year exposure
- Nuclear effects are important as
- They change the exclusive final state configuration
- They introduce a distortion in the apparent kinematics of the event
- They are included in signal and background
- Based on FLUKA nuclear model.
- **Neutrino background estimates based on NUX-FLUKA generator**

See A. Rubbia et al., NUINT01, Tsukuba, Japan 2001.

Ex
posure:
1000
kton
x year

NNN02, André Rubbia, Jan 2002

0.							
86 GeV < Total E < 0.95 GeV	Total Momentum $< 0.4 \text{ GeV}$	No protons	No charged pions	One positron	One π^0	Exclusive Channel Cuts	
45.30%	46.70%	50.85%	53.90%	54.00%	54.00%	$p \rightarrow e^+ \pi^0$	
1	454	1188	3605	6572	6604	$ u_e \mathbf{CC} $	
0	127	959	847	2125	2135	$\bar{ u}_e$ CC	
0	0	1	5	20	15259	$ u_{\mu}$ CC	
0	0	0	0	0	5794	$ar{ u}_{\mu}~{f CC}$	
0	0	0	0	0	8095	ν NC	
0	0	0	0	0	3103	$\bar{ u}$ NC	

2 m

~

0 0

0.2

0.4 0.6 0.8 Total Momentum (GeV)

@_+

tics

 $p \rightarrow e^+ \pi^0$

+ 2Y

NNN02, André Rubbia, Jan 2002

p→e⁺ π⁰

NNN02, A

/ear	ton x y	1000 k	posure:	Ex				é Rubbia, Jan 2002	André Rul
	0		0	0	0	0	96.75%	Total Energy $< 0.8 \text{ GeV}$	[. ¬
	9	57	0	0	0	0	96.75%	No charged pions	
	25	138	0	0	0	0	96.75%	No muons	
	25	138	56	400	0	0	96.75%	No positrons	
	25	138	56	404	14	143	96.75%	No π^0	
	77	282	146	871	36	308	96.75%	One Kaon	
	$\bar{\nu} NC$	u NC	$ar{ u}_{\mu}~{f CC}$	$ u_{\mu} \mathbf{CC}$	$ar{ u}_e$ CC	$ u_e {f CC}$	$p \to K^+ \bar{\nu}$	Cuts	
(GeV)	riant Mass	Invai	,	-	c				
	- - -		ן ק ק			0			
1			+	++# + + + + + + + +	- + _‡		,	0.6 m	
			++++ + + ++ + + ++ + + +++ + + ++++ + + ++++++++	+ \$ + \$ + \$ + \$ + \$ + \$ + \$ + \$	region ⁺ +			used.	
1				+ + + + + + + + + + + + + + + + + + +	- Selected	2	es of K	K+ mode	Α
.		** +*+ * * * *		+ + + + + + + + + + + + + + + + + + +	+++	ω	ecay	Aua	
	+	+++ ⁺ +		+ + + + + + + + + + + + + + +		4	grounder		
1 1 1	+		++ +++++++++++++++++++++++++++++++++++	+ + + #	1 1 1		ification	ident	

S

NNN02, André Rubbia, Jan 2002 distance from the kaon fit function along pion and kaon tracks. Energy loss profile along kaon and pion tracks and distribution of the

Kaon identification

Understanding atmospheric neutrinos

- **ICARUS** thanks to its unprecedented imaging properties will provide
- An observation of atmospheric neutrino events with very high quality.
- An unbiased, mostly systematic free, observation of atmospheric neutrino events
- \Rightarrow CC/NC separation, clean e/ μ discrimination, all final states accessible, excellent e/π^{0} separation, particle identification (p/K/ π) for slow particles
- An excellent reconstruction of incoming neutrino properties (energy and direction)

of their basic properties (flux, flavor) & of the physics A tool to understand atmospheric neutrinos, in terms of neutrinos (oscillations)

Atmospheric direct τ appearance

Search for $v_{\tau}CC$ at high energy

 $-30 V_{\tau}CC/year expected$

Compare NC(top) to NC(bottom) at

high energy

NC event direction -Requires good discrimination of

final state particles Exploit precise measurement of all

study of the event kinematical visible energy Count events as a function of -Improved discrimination by a

Solar and SN neutrinos detection

Real-time detection of low energy i.e. solar and supernovae neutrinos through two independent reactions:

 $V_x + e^- \rightarrow V_x + (e^-) V_e + {}^{40}Ar \rightarrow {}^{40}K^* + (e^-)$ Elastic scattering on atomic electron v absorption on Argon nuclei (CC reaction)

- Double signature for CC events: primary electron track eventually surrounded by low energy secondary tracks (⁴⁰K de-excitation).
- Electron detection threshold = 5 MeV (needed to reduce background) contribution and to establish the e- direction in elastic scattering).
- Sensitive to ⁸B and *hep* components of the solar neutrino spectrum.

Supernova:

$$\overline{V}_e + {}^{40}Ar \rightarrow {}^{40}Cl^* + e^+$$

Solar neutrino event rates

New solar model: BP2000 v flux used

⁸B 5.15 x 10⁶/cm²/s
 hep 9.3 x 10³/cm²/s
 (BP98: 2.10)

(No oscillation hypothesis)

11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.0	3.0	2.0	1.0	0.0	threshold (MeV)	Electron
19	32	51	TT	112	156	212	278	358	450	557	676	608	1114	1465	1854	4560	782806	Elastic	Solar neut
1	2	2	3	5	10	26	63	135	247	397	579	784	1212	1588	1848	1978	2011	Fermi	rino events (1k
3	4	8	20	49	107	205	349	540	774	1042	1336	1644	2250	2762	3111	3287	4541	Gamow- Teller	ton × year)

Solar neutrino analysis

Ilastic scattering

 $V_{e} + {}^{40}Ar -$

K deexcitation

- → σ precisely known <1%</p>
- Fermi (F) transition to 4.38 MeV IAS
- 40**K**
- σ precisely known <1%
 </p>

Bahcall, J.N. Rev. Mod. Phys., 50, 881(1978).

- Gamov-Teller (GT) to various ⁴⁰K levels
- → σ less precisely known ⁻ 10%

Ormand et.al, PLB 345 (1995) 343.

→
$$\sigma_{GT} \approx 2\sigma_{F}$$

Precise measurement of the CC rate

Reconstructed photon spectrum

A precise measurement of the solar flux can be obtained by distinguishing the superallowed Fermi transition among the other excited states

An accurate calibration of the detector energy response is fundamental

IAS dis ion vs energy thresho

Line resolution depends on energy detection threshold

Plots normalized to 2 years running of 5 T600 modules

Precision solar flux detern lation

Main background source

Able to generate electrons in the region E_{e-} > 5 MeV

present in the rock (⁴⁰K, Uranium, External source: natural radioactivity Thorium,...).

of structural materials. Internal source: radioactive contamination

Supernova rates

Assume Fermi-Dirac energy spectra and no oscillations.

$$\left\langle E_{\nu_{e}} \right\rangle = 11 MeV, \left\langle E_{\overline{\nu_{e}}} \right\rangle = 16 MeV, \left\langle E_{\nu_{\mu,\tau}} \right\rangle = 25 MeV, \left\langle E_{\overline{\nu}_{\mu,\tau}} \right\rangle = 25 MeV$$

					-							
Antineutri	Total			Absorption						Elastic	Reaction	
ino electron abso		$ u_e {}^{40}\mathrm{Ar} (\mathrm{GT}) $	$\nu_e {}^{40}$ Ar (Fermi)		total νe^-	$(\bar{\nu}_{\mu} + \bar{\nu}_{\tau}) e^{-}$	$(u_{\mu} + u_{\tau}) e^{-}$	$\bar{\nu}_e e^-$	$\nu_e e^-$			
rption no		3.5	3.5			8	8	сл	3.5		(MeV)	Т
ot yet inc		11	11			25	25	16	11		(MeV)	$< E_{\nu} >$
luded.	2130	1020	708		402	54	66	84	198		30 ktons	Event rate

Mezzetto, NUFACT01

z
=
∌
ð
2
⊳
5
6
ē,
R
Ę.
ĕ.
Ē.
÷
J.
5
2
0
8
10

	Water Čer	enkov, π ⁺	⁻ focused beam			
	Initial	Visible	Singl e ring	Tight	No	$m_{\gamma\gamma} < 45$
Channel	sample	events	$100-450\;MeV$	PID	$\mu \to {\rm e}$	(MeV/c^2)
ν_{μ} CC	3250	887	578	5.5	2.5	1.5
V₂ CC	18	12	8.2	8.0	8.0	7.8
NC	2887	37	8.7	7.7	7.7	7.5
$\nu_\mu \rightarrow \nu_e$		82.4%	77.2%	76.5%	70.7%	70.5%
	Water Čer	enkov, π	focused beam			
ν_{μ} CC	539	186	123	2.3	0.7	0.7
$\nu_{\rm e}$ CC	4	ເມ ເມ	ω	2.7	2.7	2.7
NC	687	11.7	3.3	3.	3.	0.3
$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$		79.3%	74.1%	74.0%	67.1%	67.1%

Expected event rate for 200 kt x year exposure:

SPL neutrino superbeam

- Signal: $\nu_{\mu} \rightarrow \nu_{e}$ appearance (Ue3)
- Expected to appear at the v_{μ} disappearance dip
- Backgrounds:
- v_{μ} misidentification < 10⁻⁵
- $-\pi^{0}$ (Neutral currents) background <0.001
- $-v_{\rho}$ contamination dominant: $\approx 0.002-0.003$
- **Problem: recomputed neutrino flux rate :** disagreement!

Full FLUKA simulation (including horn) PRELIMINARY

	no focus	horn focus	perfect focus
730 km			
ν_{μ} flux ($\nu/\text{cm}^2/\text{p.o.t.}$)	$7.0 \cdot 10^{-18}$	$3.5 \cdot 10^{-17}$	$2.1 \cdot 10^{-16}$
$ < E > \nu_{\mu} $ flux (MeV)	80.	218.	370.
ν_{μ} CC /kton 10 ²³ pot	0.25	చి. చి	41
$< E > \nu_{\mu} \text{ CC (MeV)}$	300.	418	473
130 km			
ν_{μ} flux ($\nu/\mathrm{cm}^2/\mathrm{pot}$)	$2.2 \cdot 10^{-16}$	$1.1 \cdot 10^{-15}$	$6.6 \cdot 10^{-15}$
ν_{μ} CC / kton 10 ²³ pot	7.9	104	1290

Comparison of rates: no focus, preliminary horn, ideal focusing

An isotropic SPL neutrino beam?

Table 1 $=\frac{Y_{\pi^+}}{4\pi R^2} \approx \frac{0.3 \ \pi^+ / pot}{4\pi (50 \text{ km})^2} \approx 10^{12} \text{ v} / \text{m}^2 / 10^{23} \text{ pot}$ 2

at 50 km from the target.	The SPL neutrino fluxes, for π^+ (left) α
	and π^-
	(right)
	focused
	in th
	e hor
	'n
	at 50 km from the target.

<i>at 30 Km</i>	from the target.						
	π^+ focused	beam			π^- focused 1	oeam	
Flavor	Absolute Flux	Relative	$\langle E_{ u} \rangle$	Flavor	Absolute Flux	Relative	$\langle E_{ u} \rangle$
	$(\nu/10^{23} \text{pot/m}^2)$	(%)	(GeV)		$(u/10^{23} \mathrm{pot}/\mathrm{m}^2)$	(%)	(GeV)
$ u_{\mu}$	$1.7 \cdot 10^{12}$	100	0.26	$\overline{ u}_{\mu}$	$1.1 \cdot 10^{12}$	100	0.23
$\overline{\nu}_{\mu}$	$4.1 \cdot 10^{10}$	2.4	0.24	$ u_{\mu}$	$6.3\cdot10^{10}$	5.7	0.25
$ u_e$	$6.1\cdot 10^9$	0.36	0.24	$\overline{\nu}_e$	$4.3\cdot 10^9$	3.9	0.25
$\overline{ u}_e$	$1.0\cdot 10^8$	0.006	0.29	$ u_e$	$1.6\cdot 10^8$	0.15	0.29

A. Blondel, J. Burguet-Castell, D. Casper, M. Donega, S. Gilardoni, J.J. Gomez-Cadenas, P. Hernandez, M. Mezzetto, Nufact Note 95, October 2001

CERN neutrino factory option:

The oscillation physics program at the NF

1. Particle ID: charged lepton tags incoming neutrino flavor neutrino 2. Charge ID: sign of lepton charge tags helicity of incoming

3. Energy resolution: Reconstructed event energy is $E_{\gamma}=E_{l}+E_{had}$

The physics programme at the NF

- magnetized F_e calorimeter With a <u>magnetized liquid argon TPC</u>, we can do the measurements proposed with
- Since muons are very well measured:
- Momentum threshold in LAr TPC can be very low (dE/dx \approx 200 MeV/m)
- Muon well separated from jet thanks to detailed imaging
- This means
- Precise determination of Δm_{23}^2 and θ_{23}
- Stringent limit/precise measurement of θ_{13}
- Determination of Δm^2_{23} sign
- Study matter effects
- Search for CP violation
- However, the better granularity offers in addition new possibilitities! :
- Detection of $v_e \rightarrow v_\tau$ oscillations
- Over-constrain the oscillation parameters (matrix unitarity)
- Study the δ phase by direct search of T violation \langle

A. Bueno, M. Campanelli, S. Navas-Concha, A. Rubbia, hep-ph/0112297, Dec 2001

NNN02, André Rubbia,

Study four event classes

How to experimentally observe the **d**-phase?

$$\Delta \delta \equiv P(\nu_e \rightarrow \nu_{\mu}; \delta = \pi/2) - P(\nu_e \rightarrow \nu_{\mu}; \delta = 0)$$

MonteCarlo predictions of the spectrum in absence of CP violation Compares oscillation probabilities as a function of E_v measured with wrong-sign muon event spectra, to

•
$$\Delta CP(\delta) \equiv P(v_e \rightarrow v_\mu; \delta) - P(\overline{v_e} \rightarrow \overline{v_\mu}; \delta)$$

beam of stored μ^+ and μ^- , respectively. Matter effects are dominant at large distances Compares oscillation probabilities measured using the appearance of v_{μ} and v_{μ} , running the storage ring with a

• $\Delta T(\delta) \equiv P(v_e \rightarrow v_\mu; \delta) - P(v_\mu \rightarrow v_e; \delta)$

effects are the same, thus cancel out in the difference Compares the appearance of v_{μ} and v_{e} in a beam of stored μ^{+} and μ^{-} . As opposite to the previous case, matter

$$\Delta \overline{T}(\delta) \equiv P(\overline{v_e} \rightarrow \overline{v_{\mu}}; \delta) - P(\overline{v_{\mu}} \rightarrow \overline{v_e}; \delta)$$

neutrino case Same as previous case, but with antineutrinos. This effect is usually matter-suppressed with respect to the

A. Bueno, M. Campanelli, S. Navas-Concha, A. Rubbia, hep-ph/0112297

Scaling of the 1 -violation effect

 $\left[P\left(\nu_{e} \rightarrow \nu_{\mu}\right) - P\left(\nu_{\mu} \rightarrow \nu_{e}\right)\right] \times E_{\nu}^{2} / L^{2} \stackrel{\sim}{\underset{\stackrel{\sim}{\overset{\sim}}{\overset{\sim}}}{\overset{\sim}{\overset{\sim}}} 0.3$

*The effect as function of L/E is the approximately the same at L=732 or 2900 km and in vacuum.

The dependence to the δ-phase is reduced by matter at L=7400 km

See A. Bueno, M. Campanelli, S. Navas-Concha, A. Rubbia, hepph/0112297, Dec 2001

Binned AT discriminant

NNN02, André Rubbia, Jan 2002

A. Bueno, M. Campanelli, S. Navas-Concha, A. Rubbia, hep-ph/0112297

10²¹ μ decays required to cover LMA solution !

Conclusion

- The excellent properties of liquid Argon extremely high quality. imaging provide a vast physics program of
- The ICARUS Liquid Argon TPC has moved devices from basic proof of principle to large kton scale

-3 kton proposed for ≈2005 -T600 in 2002 at LNGS

R&D for magnetized LAr ongoing. This is the proof that kton-scale LAr can be built and operated underground.