ICARUS detectors Atmospheric neutrinos working group

André Rubbia ETH Zürich, Switzerland ICARUS Collaboration

NOW 2000

9-16 September 2000

Introductory remarks

- * Current atmospheric data are extremely convincing, in particular that of SuperK.
- ★ However,
 - Only muon "disappearance" has so far been observed, convincing signal for flavor oscillation is the detection of an "appearance" effect, the presence of matter effects disfavors transitions to sterile neutrinos; since maximal $v_{\mu} \rightarrow v_{e}$ is excluded by current data, this means detecting $v_{\mu} \rightarrow v_{\tau}$ appearance.
 - Ø Given the tau threshold, tau appearance is most easily performed with high energy neutrinos produced at accelerators ⇒ NUMI(high) or CNGS(optimized for tau)
- Nonetheless, there are new measurements that can further improve our understanding of the atmospheric oscillation effect. For example:
 - 8 **Detecting** $v_{\mu} \rightarrow v_{\tau}$ appearance in the atmospheric beam \Rightarrow large exposures to accumulate events at sufficiently high energy, good event reconstruction at high energy and good detector granularity to separate tau decays from backgrounds.
 - Observe the predicted L/E dependence of the flavor oscillation (so far only observed with rather poor resolution); in particular, models with "exotic" mechanisms (decay,...) cannot be completely excluded; a convincing signal is the observation of at least a full L/E "oscillation" which requires sufficient L/E "range" and resolution.

Introductory remarks (II)

- We expect ICARUS technology to contribute to a better understanding of the atmospheric neutrino phenomenology,
 - → Thanks to its unique performances in terms of *imaging capabilities*, *resolution* and *precision*
 - The capability to provide redundant, high precision measurement with systematic uncertainties of experimental origin minimized as much as possible
 - Thanks to improvements over existing methods in
 - Neutrino event selection
 - Identification of muon, electron and tau neutrino flavors
 - Identification of neutral currents
- In addition, the possibility to achieve a broad scientific program with the same detector is considered fundamental
 - → (a) LBL neutrinos
 - → (b) atmospheric neutrinos
 - → (c) proton decay searches

ICARUS liquid argon imaging TPC

Detector is continuously sensitive, thus allowing to easily simultaneously collect atmospheric, CNGS and other rare events...

Real event from 15 ton

Neutrino event in 50 liter LAr TPC (1998)

ICARUS-CERN-Milano

CERN v-beam

(Chamber located in front of NOMAD detector)

Cosmic tracks in 15 ton prototype (2000)

Drift

Main characteristics of liquid Argon TPC's

- √ **Excellent imaging capabilities**, i.e. a "bubble-chamber" like device
- √ Target is fully **isotropic** and **homogeneous**
- Tracking device, capable of dE/dx measurement. The high dE/dx resolution allows both good momentum measurement and particle identification for soft particles
- ✓ Electromagnetic and hadronic showers are fully sampled. This allows to have a good energy resolution for both electromagnetic, $\sigma(E)/E≈3/\sqrt{E(GeV)}$ and hadronic contained showers, $\sigma(E)/E≈20\sqrt{\sqrt{E(GeV)}}$
- ✓ Excellent electron identification and e/π^0 discrimination thanks to the ability to distinguish single and double m.i.p. by ionization and to the bubble chamber quality space resolution
- √ Calorimetry allows **full kinematics reconstruction of "contained" events**
- √ Muon momentum can be **determined by multiple scattering** $\Delta p/p \approx 20\%$ for long tracks
- Continuously sensitive, self-triggerable, cost effective and simple to build in modular form, sufficiently safe to be located underground.

But physics program requires large mass, of the order of several ktons.

ICARUS: a graded strategy

The partnership of specialized industry already at the level of conceptual design has been crucial to the development of larger detector masses.

Cooperation with specialized industries:

- Air Liquide for Cryostat and Argon purification
- BREME Tecnica for internal detector mechanics
- CAEN for readout electronics

The ICARUS T600 module

Under construction

Assembly of the T600 internal detector (clean room)

Mounting inside T600 detector (clean room)

6

Wire installation in T600 internal detector

T600 internal detector (clean room)

Planning for the assembly of the first half-module - Status at the end of August 2000 -

What we get for 5 ktons:

•Number of targets for nucleon stability:

- -2×10^{34} nucleons $\Rightarrow \tau_p (10^{32} \text{ years}) > 6 \times T(\text{yr}) \times \epsilon @ 90 \text{ C.L.}$
- •Atmospheric:
 - 1000 atm CC events / year
 - $-\approx 5 v_{\tau} CC$ /year from oscillations

•Solar:

-8500 solar neutrinos / year @ E > 5 MeV

•CERN-CNGS:

 $-13600 \nu_{\mu} CC$ per year @ L = 730 km

•Neutrino factory:

 $-1200 \nu_{\mu} CC per 10^{20} \mu @ L = 7400 km$

Atmospheric neutrino rates

- ★ Flux: 3D calculation, Battistoni et.al., hep-ph/9907408
- ★ Cross-sections: "NUX", ICARUS Collab.

Up/down asymmetry

0.2

0.1

0

a) $\sin^2 2\Theta = 1$

b) $\sin^2 2\Theta = 0.8$

c) $\sin^2 2\Theta = 0.6$

 $E_v < 0.4 GeV$

Benefit from good angular resolution on incoming neutrino direction thanks to reconstruction of all final state particles

The L/E distribution

★ We benefit from

- Excellent energy and angular resolution of final state hadrons
- Excellent measurement of lepton (electron by shower and muon by multiple scattering)
- → Overall, very good determination of incoming neutrino L and E

- * The selection of events is clean and non-biased
- ★ The selection is **identical for electron and muon** events ⇒ study both v_e and v_μ CC samples

Reconstructed L/E resolution

★ Selection cuts to suppress effect of Fermi motion

→ E_{visible} > 1 GeV (efficiency≈40%)

L/E distribution: electrons and muons

- ★ Oscillation parameters:
 - → △m²₃₂ = 3.5 x 10⁻³ eV²
 - → sin² 2⊖₂₃ = 0.9
 - → sin² 2⊖₁₃ = 0.1
- Electron sample can be used as a reference for no oscillation case

25 kt year

v_{u} disappearance – L/E distribution

50 kt year

Search for "Tau-like" atm events (I)

★ Discriminate between $v_{\mu} \rightarrow v_{\tau}$ and $v_{\mu} \rightarrow v_{s}$ oscillations by looking for excess of *"neutral-current-like"* events produced by upward neutrinos (large tau branching into hadronic channels)

* Search for v_{τ} CC at high energy (tau threshold)

$\nu_{\tau} + \bar{\nu}_{\tau} \text{ CC}$	(NUX,	Fluka	Relative to	Relative to	
	Rate $(kton \times year)$			Fluka 1D	Bartol
$\Delta m^2 \ (eV^2)$	DIS	QE	Sum		
5×10^{-4}	0.11	0.11	0.22	0.96	0.81
1×10^{-3}	0.28	0.18	0.46	1.02	0.84
3.5×10^{-3}	0.59	0.21	0.80	1.00	0.81
5×10^{-3}	0.64	0.24	0.88	1.01	0.80
1×10^{-2}	0.70	0.20	0.90	0.99	0.78

Search for "Tau-like" atm events (II)

☆Consider *tau decays into hadronic final states (Br ≈ 64%)*☆Compare *upward/downward neutral currents events* at high energy

☆Requires good discrimination of NC event direction

☆Use the kinematical feature of tau decays to improve over background

Event above an energy cut $\Delta m^2 = 3.5 \times 10^{-3} \text{ eV}^2$

Cut	ν NC top	au bottom
$E_{visible} > 1 \text{ GeV}$	327	22
$E_{visible} > 2 \text{ GeV}$	150	22
$E_{visible} > 3 \text{ GeV}$	95	21
$E_{visible} > 4 \text{ GeV}$	67	20
$E_{visible} > 5 \text{ GeV}$	51	17
$E_{visible} > 6 \text{ GeV}$	40	16
$E_{visible} > 7 \text{ GeV}$	33	14
$E_{visible} > 8 \text{ GeV}$	28	$1\overline{3}$
$E_{visible} > 9 \text{ GeV}$	23	12
$E_{visible} > 10 \text{ GeV}$	21	11

50 ktxyear

Tau candidate Q_T

Candidate kinematical isolation: Q_T = transverse momentum relative to total momentum

 Q_{τ} and Evisible combined by likelihood techniques

Search for "Tau-like" atm events (III)

- Statistical excess for evidence of taus as a function of exposure
- Discrimination
 between sterile and tau hypothesis more stringent
- Analysis shown with and without kinematical selection

Conclusion

- We are reaching a *fundamental milestone* of the liquid Argon imaging TPC technology
- The T600 is expected to realistically produce its first tracks within the *beginning of next year*
- * If successful, it is to be expected that more massive Liquid

Argon detectors will be envisaged & constructed

★ They will provide unique opportunities to further detect and study the atmospheric neutrino oscillation phenomenon