December 13-16, 2001, KEK, Tsukuba, Japan

Neutrino-Nucleus Interactions in the Few GeV Region The First International Workshop on

A. Bueno, S. Navas, <u>A. Rubbia</u> (ETH Zürich)

Some thoughts on neutrino beams for

neutrino cross-section measurements

The low energy region...

Many channels have to be studied ...

Charge Current (CC) interactions $(v N \rightarrow l X)$: Coherent production $v \mathbb{N} \rightarrow v \mathbb{N}$ Elastic (electron) scattering ($v e^{-} \rightarrow v e^{-}$ Neutral Current (NC) interactions ($v \ N \rightarrow v \ N$) \leftarrow specially important -Deep inelastic ($v q \rightarrow l q'$ or $v q \rightarrow v q$) 4 multi-pion production via fragmentation Resonant (v N \rightarrow l N^{*}) and Single/Multi pion production (v N \rightarrow l N' π) Quasi-elastic ($v N \rightarrow l N'$) the neutrino flux beam should be « simple »!! dominant atmospheric reaction

NUINT01, A. Rubbia, Dec 2001

Comparison of σ/E_v for QE and total processes between data and NUX

The region of interest is certainly between 100 MeV and 10 GeV!

Shopping list

Goals

- Measure cross-section from kinematical threshold, through quasi-elastic dominated region, study single-pion production, study opening of multi-pions final states \approx 0.1 < E_v < \approx 3 GeV
- Study neutrino and antineutrino cross-sections
- Measure both v_e and v_{μ} ?
- Study nuclear effects (i.e. compile various targets in same beam)
- **Experimental aspects:**
- Different types of target (nuclear effects)
- Capability to measure exclusive final states (low density, high granularity)
- Capability to measure inclusive final states (high density)
- **Beam aspects**
- Statistics
- k Sufficient flux also at the lowest energies (cross-section decreases and meson decay kinematics less focalized at lower energy)
- Systematics
- к In the range of 1%, 10% or 20%?

Neutrino beam candidates

- Traditional « pion » beams –K2K
- FNAL Booster
- -NUMI-LE, ME, HE
- JHE
- **Storage ring beams (e.g. antiproton accumulators)**
- FNAL Debuncher
- -CERN AD
- Neutrino factories

Traditional beams

				uncertainty
20%	20%	20%	10%	Flux
				rate per ton/year
600	660	630	0.5	Anti-v _e CC
12000	9500	2300	-	v _e CC rate per ton/year
20000	32000	21000	1000	anti-v _µ CC rate per ton/year
2000000	1100000	210000	5000	ν _μ CC rate per ton/year
13 GeV	7.5 GeV	3.5 GeV	≈1 GeV	Peak E _v
NUMI HE	NUMI ME	NUMI LE	FNAL Booster	

From S. Geer's page: http://www.fnal.gov/projects/muon_collider/nu/study/scattering/beam_table.html

FNAL Booster
Peak E _v ≈1 GeV
ν _μ CC rate per ton/year 5000
anti-v _µ CC rate 1000 per ton/year
v _e CC rate per 1 ton/year
Anti–v _e CC 0.5 rate per ton/year
Flux 10% uncertainty

Ę, (GeV)

intensities compared to neutrino The machine could deliver very low

NUINT01, A. Rubbia, Dec 2001

complex

Scenario within the CERN

100 MeV bins !

10^{15} useful µ⁻ decays, $E_{\mu} = 2$ GeV, 100 Tons detector, 1m radius, 10 m baseline, 30 m straight section

 $1E+15 \propto events$: $E_{x} = 2$ GeV, Dist = 10 m, (1m, 100Ton) detector, Spread = 30 m, Arclen = 0 m, RingPart = 1 m

Relative error (%)

 10^{15} useful μ decays, $E_{\mu} = 2$ GeV, 100 Tons detector, 1m radius, 10 m baseline, 30 m straight section

100 Tons detector, 1m radius, 10 m baseline, 30 m straight section

Antiprotons Accumulators

- P-pbar physics is based on technique of beam cooling, which allows to accumulate pbar in sufficient number within a phasespace of an accelerator.
- Design of pbar sources has led to extensive studies of production and capture of pbar in storage rings, in order to optimize the accumulation rate
- Optimum choice of target, incident proton beam parameters, focusing optics to provide largest possible particle density inside transverse and longitudinal admittance of storage ring
- Two machines:
- CERN AC & AA, PS proton energy=26GeV, p=3.57 GeV/c, admittance straight sections, longest account for 14% of total 200π mm.mrad in both planes, $\Delta p/p=\pm 3\%$, circumference = 182m, four
- FNAL AD, p=8.9 GeV/c, admittance 25π mm.mrad in both planes. account for 13% of total $\Delta p/p=\pm 2\%$, circumference = 500m, triangular, longest straight section

A parasitic run...

- During their normal operation, the ring accumulates negative particles, including π^- , K⁻, μ^- and e⁻'s.
- To a large extent, the optimization for the pbar's is also an optimum focalization for other negative particles like pions!
- The muons are produced in the decays of π^- and K⁻'s.
- I These decays can occur anywhere, that is, within the focusing system, the transfer lines between the target region and the storage ring, or within the storage ring itself.
- Only a small fraction of the muons has a sufficiently small the ring to stay captured as well transverse emittance and a momentum within the required bite of

A parasitic run is fully justified!!

« A Search for nu oscillations using the FNAL Debuncher » W. Lee et al., FNAL PROPOSAL P-860, December 1992

What do we	expect?
 For simplicity we consider only ring. 	v particles stored into the
• The lifetime of pions is sich tha few revolutions.	t they will decay within a
• The few captured muons that r ring will subsenquently decay.	emain trapped into the
$\pi^-, K^- \rightarrow \mu \overline{\nu_{\mu}}$	$\mu^- \to e^- \overline{V}_e V_\mu$
Short burst	Long burst
This has been measured! A. Bross et al., FNAL-PUB-92/357, December 1992	$\int \mu^{-} / \bar{p} = 1.0 \pm 0.2$
Debuncher Ring »	$\mu^{-} / pot = (2.0 \pm 0.4) \times 10^{-5}$
NUINTOI, A. Rubbia, Dec 2001	

$\frac{1}{6.7 \times 10^{12}}$	1.7×10^{14}	$1.3 imes10^{14}$	$4.2{ imes}10^{13}$	Total useful $~\mu$ /year
$ 1.2 \times 10^{14}$	3×10^{15}		$1.7{ imes}10^{15}$	Total useful π /year
4×10^{-5}	2.		2×10^{-5}	Fraction of μ / POT
$\times 10^{-4}$	6		8×10^{-4}	Fraction of π/POT
2×10^{18}	5×10^{19}		$1.5 { imes} 10^{19}$	POT/year
${ m eV/c}\pm3\%$	3.5 G	$ m V/c\pm2\%$	8.9 Gev	Momentum acceptance
182 m)5 m	5(Circunference Length
$6~{ m GeV}$	2) GeV	120	Proton beam energy
C CERN AD (2000)	CERN A (80's)	Debuncher Geer, FNAL-FN-706	FNAL I FNAL-PUB-92/357	

10m downstream of a CERN AD straight section

Estimated event rate for 5×10¹⁹ pots in a 0.1 kton detector

					DETECTOR	
Anti-v _e	۷ _µ	Anti-v _µ			neutrino beam	
1080	3410	8525	(total)	CC		
415	1165	4230		QE	$p_{\mu} = 3.57 G$	
670	2245	4290		DIS	eV/c(-3%),	

Consistent with measurement at FNAL

d·i·k	6.7×10^{12}	1.7×10^{14}	4.2×10^{13}	m. Number of useful muons/year
d•h•j	$1.2{ imes}10^{14}$	3×10^{15}	1.7×10^{15}	1. Number of useful pions/year
	10^{-2}	$14\times$	14×10^{-2}	k. Fraction of muons in straight section
	10^{-2}	$10 \times$	20×10^{-2}	j. Fraction of pions decaying in straight section
e f g	10^{-5}	$2.4 \times$	2×10^{-5}	i. Fraction of μ / POT
e•f	0^{-4}	6×1	8×10^{-4}	h. Fraction of π / POT
	0^{-2}	4×1	2.5×10^{-2}	g. Efficiency to capture muon from pion (μ/π)
	0^{-2}	3×1		f. Horn efficiency to capture pions
	0-2	2×1		e. Pion production efficiency $(3.5 \text{ GeV/c} \pm 3\%)$
a-b/c	2×10^{18}	5×10^{19}	1.5×10^{19}	d. Protons on target (POT)/year
	60	2.4	2	c. Repetition time (sec)
	10^{13}	1.2 imes	3×10^{12}	b. Protons on target per pulse
)7	10	10^7	a. Number of "useful" seconds/year
	AD	\mathbf{AC}	Debuncher	

energy bins 200 MeV

⇒ Lowest energies (unfortunately) are Very strong energy-angle correlation

Systematics...

- Storage ring of pions or muons provide the cleanest way to measure neutrino cross-sections
- In particular, muons are the cleanest
- since they can be better monitored (long lifetime)
- Muon polarization
- к Not dominant
- Bending arcs of storage ring
- Negligible

Statistics $\approx 5-10\%$ for $\approx 10^{15}$ muons Systematics $\approx 1\%$

Conclusion

- **Traditional** « pion » beams are the most realistic choice for performing neutrino cross-section measurements
- Already existing
- Event rates are generally very high
- But systematics dominated !
- Low energy neutrino factories will provide the « cleanest » environment to measure cross-sections
- Equal amount of neutrinos and antineutrinos
- Flux systematics small, certainly at the level of few %'s
- But is it (financially) realistic?
- Antiproton accumulators are certainly an interesting compromise.
- They already exist
- A parasitic run is possible
- Pion and muon decays offer interesting features