CP- and T-violation studies in a medium- energy Neutrino Factory

A.Bueno, M.Campanelli, A.Rubbia ETH Zurich

Introduction

raditionally, proposed CP-violation studies in a Neutrino Factory consist in exploiting the differences in the Wrong-Sign Muons (WSM) spectrum due to the effect of a nonzero δ phase.

Even for an optimistic choice of the parameters, this difference is tiny, and requires accurate detector description, since data are compared to MC only.

CP-violation

CP-violation affects electrons as well, but it drowns in a large background from beam v_e .

$$\mu^{+} \rightarrow e^{-} \nu_{e} \nu_{\mu}$$

$$\rightarrow e^{+}$$

$$\rightarrow \nu_{\mu} 4 \nu_{e} \rightarrow e^{-}$$

The electron component from beam prevents a direct comparison of $v_{\mu}4 v_{e}$ and $v_{e}4 v_{\mu}$ oscillations, i.e. a direct measurement of T-violation.

T-violation

For CPT theorem, magnitude of T- and CP-violation must be the same.

Vatter propagation affects neutrinos and antineutrinos in a different way, creating a fake CP violation, Jependent on earth density and oscillation parameters.

Γ-violation deals with differences between neutrinos only, so matter effects only give a scale factor.

The comparison of $v_{\mu}4 v_{e}$ and $v_{e}4 v_{\mu}$ oscillation probabilities offers a direct way to highlight a complex component in the mixing matrix, independent of matter and other oscillation parameters.

This measurement is not directly accessible at a Neutrino Factory due to large v_e background in the beam. Two methods have been proposed to solve this problem:

Beam polarization

Electron charge

Polarization

onservation of angular momentum prevents v_e from decaying in the forward direction for a fully-polarized muon beam

Electron component in forward detector disappears for P $_{\mu^+}$ =+1!

Polarization at work (doesn't work)

he relevance of polarization for CP-violation studies was already studied for Monterey.

inal outcome: to beat beam electrons, unrealistically large values of polarization are required.

Electron contribution to χ^2 for the CP fit.

Only at high negative polarization electrons are competitive with wrong-sign muons ($\Delta \chi^2 = 5$).

Figures from: A.Blondel, A.Bueno, M.Campanelli, A.Rubbia, Monterey proceedings.

Electron charge

aving a detector with electron charge identification is not unfeasible. With 1T field, electrons can be sufficiently bent before they start showering;

Initial electron direction

A further source of uncertainty is the initial electron direction, not known a priori in CC interactions. Since energy is known, a fit with an arc with proper radius gives back angle with 5 mrad accuracy

Fit for electron charge

Finally, charge is determined using a likelihood fit, comparing the hits to an average map and its mirror image. Larger weight is given to hits before the shower development.

Work still in progress; however, background contamination O(10⁻³) seem feasible for efficiencies O(10-20%) for E_e < 5 GeV.

Choice of energy/baseline

The need of low-energy electrons points towards lower-energy beams and shorter distances.

Let us re-consider for the whole energy/baseline optimization, in particular for CP-violation issues.

Neutrino oscillations and CP violation

Oscillation probability is given by a CP-even and a CP-odd term

$$\mathsf{P}(\nu_{\alpha} \rightarrow \nu_{\beta}) = \mathsf{P}_{\mathsf{CP}\text{-}\mathsf{even}}(\alpha,\beta;\mathsf{E},\mathsf{L}) + \mathsf{P}_{\mathsf{CP}\text{-}\mathsf{odd}}(\alpha,\beta;\mathsf{E},\mathsf{L})$$

 $\mathsf{P}(v_{\alpha} \rightarrow v_{\beta}) = \mathsf{P}_{\mathsf{CP}\text{-}\mathsf{even}}(\alpha,\beta; \mathsf{E},\mathsf{L}) - \mathsf{P}_{\mathsf{CP}\text{-}\mathsf{odd}}(\alpha,\beta; \mathsf{E},\mathsf{L})$

CP-odd term (in vacuum)

$$P_{\text{CP-odd}}(\mu, e) = (P(\nu_e \rightarrow \nu_\mu) - P(\overline{\nu_e} \rightarrow \overline{\nu_\mu}))/2 = (P(\nu_e \rightarrow \nu_\mu) - P(\nu_\mu \rightarrow \nu_e))/2 =$$

Maximum of CP-odd effect

osition of first (and broader) maximum of CP-odd term is proportional to baseline

$$E_{CP-odd MAX} = \alpha L$$

$$\alpha$$
⁻1.27 × 2× Δ M²₂₃/ π

$$12.8 \times 10^{-3}$$
 for ΔM^2_{23} = 3.5 10⁻³ \longrightarrow $4E_{CP-odd MAX}^{-2}$ GeV for L=732 km
 $4E_{CP-odd MAX}^{-8}$ GeV for L=2900 km

Neutrino flux at Neutrino Factory

L/E dependence

Not only the CP-odd probability, but also the number of oscillated events around the maximum only depends on L/E and not on the specific baseline.

For a given L/E_{μ} , the difference produced by CP violation is linear in L; nowever, for constant machine power, $N_{\mu} \propto 1/E_{\mu}$, so CP-violating effects only depend on L/ E_{μ}

L/E dependence in matter

Matter effects do not change this picture in any significant way, unless L gets too big (L>5000 km).

For a given machine power, CP-violating effects will be ⁻ the same, provided that $L(km)/E_{\mu}(GeV) < 200$

Event rates

10 ²¹ muon decays		BG rejection factor for electrons O(10 ⁻³) for 10-20% efficiency				
		Drogogg	L=732 km	L=732 km	L=2900 km	L=2900 k
		1100000000000000000000000000000000000	μ uecays 12354	μ decays 4911	μ decays 144200	$\frac{\mu^{-} \text{decay}}{63850}$
	Nonoscillated	$ \frac{\nu_{\mu}}{\nu_{u}} \operatorname{NC} $	3170	1510	41200	22400
	rates	ν_e^{r} CC	4302	11133	55340	128400
		$\nu_e \operatorname{NC}$	1264	2709	19900	36700
		$\nu_{\mu} CC$	56	289	269	2076
	Oscillated	$\nu_e CC$	166	65	1312	249
	events $(o \equiv \pi/2)$	$\nu_{\tau} \rightarrow \mu \text{ CC}$ $\bar{\nu} \rightarrow e \text{ CC}$	0.2 67	0.9	10	87
		$\frac{\nu_{\tau}}{\nu_{\mu}}$ CC	65	249	286	1978
	► Oscillated	$\nu_e \stackrel{\nu_\mu}{\text{CC}}$	245	64	1732	248
offoct	events $(\delta = 0)$	$\nu_{\tau} \to \mu \ \mathrm{CC}$	0.2	0.9	16	87
eneci		$\bar{\nu}_{\tau} \to e \ \mathrm{CC}$	67	22	3333	1454
		$ u_{\mu} \text{ CC} $	68	170	291	1516
	Oscillated	$\nu_e CC$	268	56	1747	233
	events ($\delta = -\pi/2$)	$\nu_{\tau} \rightarrow \mu \text{ CC}$	0.2 67	0.9	10	$\frac{87}{1454}$
		$\nu_{\tau} \rightarrow e \ 0.0$	07		აააა	1404

Wrong-sign lepton spectra

T-violation: the method

Measured oscillation probabilities

$$\Delta m_{23}^{2}=3.5\subseteq 10^{-3} \text{ eV}^{2}$$
$$\Delta m_{12}^{2}=1.\subseteq 10^{-4} \text{ eV}^{2}$$
$$\sin^{2}2\theta_{13}=0.05$$
$$\sin^{2}2\theta_{23}=1.$$
$$\sin^{2}2\theta_{12}=1.$$
$$\delta_{13}=\pi/2$$
$$10^{21} \mu \text{ decays}$$

10 kton detector

Direct comparison of oscillation probabilities for neutrinos and antineutrinos

Probability difference

Difference is significant for neutrinos (antineutrinos are matter-suppressed) after evaluation of statistical and systematic errors (5% variation in τ contribution)

Direct measurement of the CP-odd component.

Comparison of direct method with fit

90% C.L. contours for δ_{13} , Δm^2_{12}

A) L=2900 km, E=30 GeV with WSE
B) L=732 km, E=7.5 GeV with WSE
C) L=2900 km, E=30 GeV no WSE
D) L=732 km, E=7.5 GeV no WSE
E) L=732 km, E=5 GeV direct method

 $\begin{array}{ll} \mbox{E}_{\mu}\mbox{=}30 \mbox{ GeV} \rightarrow 2.5\mbox{*}10\mbox{20 decays} \\ \mbox{E}_{\mu}\mbox{=}5 \mbox{ GeV} \rightarrow 10\mbox{21 decays} \end{array}$

As expected, for fixed machine power there is no advantage in going to high energy!!

Conclusions

A direct measurement of T-violation is possible at a neutrino factory using a magnetized, fine-grained detector through the identification of Wrong-Sign Electron events.

- Comparison of oscillation probabilities for neutrinos and antineutrinos is not sensitive to matter effects, and does not require the precise knowledge of oscillation parameters
- To have better electron charge determination, and smaller background from τ decays, the best configuration is a mediumenergy, long-baseline beam

The result is statistically significant with a reasonable choice of parameters, and is not much worse than the MC-based fit For a given machine power, CP effect only depends on L/E This is an extremely powerful and convincing way to prove the