Neutrino factories^(*): *Detector concepts*

*we do not consider conventional "superbeams" (see hep-ph/0103052)

André Rubbia, ETH Zürich (ICARUS Collaboration) Special thanks to A. Bueno & M. Campanelli **IX International Workshop on 'Neutrino Telescopes''**

6th-10th March, 2001

The oscillation physics program at the NF

 $\begin{array}{c} \mu^{-} \rightarrow e^{-} \, \overline{\nu}_{e} \nu_{\mu} \\ \nu_{\mu} \rightarrow \nu_{e} & appearance \\ \nu_{\mu} & disappearance \\ \nu_{\mu} \rightarrow \nu_{\tau} & appearance \\ \overline{\nu}_{e} & disappearance \\ \overline{\nu}_{e} \rightarrow \overline{\nu}_{\mu} & appearance \\ \overline{\nu}_{e} \rightarrow \overline{\nu}_{\tau} & appearance \\ \end{array}$

Ideal detector should be able
to measure 12 different
processes as a function of
L and E_v $v_{\ell}N \rightarrow \ell^- + hadrons$ $\overline{v}_{\ell}N \rightarrow \ell^+ + hadrons$ $\overline{v}_{\ell}N \rightarrow \overline{v}_{\ell} + hadrons$

Plus their charge conjugates with $\mu^{\text{+}}$ beam

Particle ID: charged lepton tags incoming neutrino flavor
 Charge ID: sign of lepton charge tags helicity of incoming

neutrino

3. **Energy resolution**: Reconstructed event energy is $E_v = E_l + E_{had}$

4. Various baselines L could help for detector systematics

The Neutrino Factory

$$\left| \mu^{-} \rightarrow e^{-} \overline{V}_{e} V_{\mu} \quad or \quad \mu^{+} \rightarrow e^{+} V_{e} \overline{V}_{\mu} \right|$$

Predicted event rates at a Neutrino Factory

FNAL-FN-692, Apr 2000		10 ²⁰ µ⁻ decays			No oscillations assumed	
		Baseline	$\langle E_{\nu_{\mu}} \rangle$	$\langle E_{\bar{\nu}_e} \rangle$	$N(\nu_{\mu} CC)$	$N(\bar{\nu}_e CC)$
Experiment		(km)	(GeV)	(GeV)	(per kt-yr)	(per kt–yr)
NuMI	Low energy	732	3	_	458	1.3
	Medium energy	732	6	—	• 1439	0.9
	High energy	732	12	_	3207	0.9
CNGS		732	17		2714	1.4
Muon ring	$E_{\mu} (\text{GeV})$					
	10	732	7.5	6.6	1400	620
	20	732	15	13	12000	5000
	50	732	38	33	• 1.8×10^5	$7.7{ imes}10^4$
Muon ring	$E_{\mu} (\text{GeV})$				•	
	10	2900	7.6	6.5	91	41
	20	2900	15	13	4 740	330
	50	2900	38	33	11000	4900
Muon ring	$E_{\mu} \; (\text{GeV})$					
	10	7300	7.5	6.4	14	6
	20	7300	15	13	110	51
	50	7300	38	33	1900	770

However, in addition to the increased neutrino flux, ambitious oscillation physics program requires detectors in the 10's kton range to perform experiment with baselines $L \approx 1000$'s km

The goal: detect μ^+ , μ^- , e^+ , e^- , τ^+ , τ^- and NC !

$\star Particle ID: \Rightarrow via CC interactions$

- Muons: straight-forward, look for penetrating particles, but beware π[±],K[±] and charm decays
- → *Electrons*: *harder*, look for large & "short" energy deposition, need good granularity for e/π^0 separation
- → Taus: hardest, "kink" or kinematical methods (statistical separation), τ→hadrons+v (Br≈60%) look like "NC"

$\star \ \underline{Charge ID}: \qquad \Rightarrow via \ magnetic \ analysis$

- → *Muons*: *easy*, muon spectrometer downstream or fully magnetized target
- → Electrons: hardest, need to measure significantly precisely the bending in B-field before start of e.m. shower
- → *Taus*: easy for $\tau \rightarrow \mu \nu \nu$ (Br≈18%), otherwise *difficult*

This has to be implemented on multi-kton detectors... various choices & optimizations considered.

1a. Magnetized steel-scintillator sandwich

* High density

* *Magnetizable* for μ^+/μ^- discrimination

→Detects: µ⁺, µ⁻, [e, NC]

- ★ Good muon and reasonable jet energy resolution $\sigma_{E_h}/E_h \sim \frac{80\%}{E_h}$
- *Lots of experience*. e.g. CCFR/NuTeV, CDHS.
 MINOS will reach 5.4 kton in 2003.
- ⋆ Disadvantages:
 - → Amount of instrumentation scales with *volume*
 - → Minimum muon energy threshold (4-6 GeV) in order to separate it from hadrons and muon isolation from jet difficult to tell. Threshold even higher to have excellent wrong-sign-µ @ 10⁻⁵
 - → e/h discrimination rather poor
 - Angular resolution determined by transverse readout segmentation, usually rather modest.

The MINOS far detector

- * 8m octagonal tracking calorimeter
- ★ 486 layers of 2.45cm Fe
- ★ 2 sections, each 15m long
- * 4.1cm wide solid scintillator strips with WLS fiber readout
- ★ 25,800 m² active detector planes
- ★ Magnet coil =1.3T
- ★ 5.4kton total mass

Can it be scaled to 40 kton ?

MINOS far detector parameters

System	Parameters			
MINOS cavern	$82.3 \text{ m} \times 13.8 \text{ m} \times 11.6 \text{ m}$ (height)			
Supermodules	2 supermodules, each 2.7 metric kt, 14.4 m long $ imes$ 8 m wide			
Detector mass	5.14 ktons steel $+$ 261 tons scintillator $=$ 5.4 ktons			
Planes/supermodule	486 steel planes and 485 scintillator planes, 2.54 cm pitch			
Detector units/plane	192 scintillator strips packaged in 8 modules			
Readout	2-ended, with 8 $ imes$ multiplexing			
Channel count	484 planes $ imes$ 192 strips $ imes$ 2 \div 8 = 23,232 channels			
Photodetectors	1,452 16-channel PMTs in 484 MUX boxes			
Installation rate	1 plane/1.85 shifts or 24 planes/month (maximum)			
Installation time	12 months for first supermodule, 22.5 months for two			
Magnetic field	1.3 T at 2 m radius in steel octagon planes			
Magnet coils	15 kA-turns, water-cooled copper wire, 58 kW total			
Total cavern cooling	292 kW maximum (at the end of the installation period)			

Table 13: Summary of some of the major parameters of the far detector and its requirements on the infrastructure systems of the MINOS cavern in the Soudan mine.

André Rubbia, ETH/Zürich, 3/9/01, Venice

From MINOS WWW page

1b. Large Magnetized Detector

Cylindrical symmetry, R=10m,=20m

6 cm thick iron rods interspersed with 2cm thick scintillators "longitudinally segmented"

Field: 1 T

⇒ Muon performance studied with GEANT and assume MINOS-like $\begin{array}{ll} \sigma_{E_h}/E_h & \sim 76\%/\sqrt{E_h} \oplus 3\% \\ \sigma_{\theta h}/\theta_h & \sim 17/\sqrt{E_h} \oplus 12/E_h \end{array}$ performance for E_{had} , θ_{had} ...

André Rubbia, ETH/Zürich, 3/9/01, Venice

2. Large Water Cerenkov

- Well proven technology, e.g. *Kam, IMB, SuperKamiokande* →Detects: μ, e, [NC]
- Iow cost target material, only the surface (not volume) needs to be instrumented, but size eventually limited by water properties
- ★ Next generation 1Mton under consideration C.K. Jung, hep-ex/0005046
- ⋆ Disadvantages:
 - → Reconstructed (pattern) limited to "simple event topologies" (e.g. single-ring)
 - Not compatible with precise reconstruction of high energy neutrinos
 - (e.g. E_v>≈ 5 GeV ?)
 - → Muon charge ID

Simulated neutrino event from a 50 GeV storage ring

FNAL-FN-692, Apr 2000

3. Emulsion/target sandwich

- ★ OPERA: Technique on the ≈1 kton scale to be demonstrated by at LNGS in 2005
 - →Detects: μ⁺, μ⁻, τ ("kink"), [e,NC]
 - → Direct search of $v_e \rightarrow v_\tau$ oscillations, if charge of the tau can be detected to suppress $v_\mu \rightarrow v_\tau$ "background"
- ⋆ Disadvantages:
 - Probably difficult to scale to multi-kton mass
 - → Scanning (e.g. $v_e \rightarrow v_\tau$ to $\sin^2 2\theta_{13} \approx 10^{-4}$?)
 - \rightarrow Possibly severe charm background from v_e interactions

4. Liquid Argon imaging TPC

- * *ICARUS*: mature technique, demonstrated up to 15 ton prototype
- ★ Features provided:
 - →Detects: μ⁺, μ⁻, e, NC, [τ]
 - → Fully homogeneous, continuous, precise *tracking device* with high resolution dE/dx *measurement* and full sampling *electromagnetic and hadronic calorimetry*
 - → Excellent e identification/measurement and e/hadron separation
 - → Very good hadronic energy resolution
- * 600 ton prototype construction very advanced
 - → After the foreseen series of technical tests to be performed in Pavia within the summer 2001, the T600 module will be ready to be transported into the LNGS tunnel
- ⋆ Disadvantages:
 - → Muon charge discrimination: target cannot be easily magnetized (but...)
 - → Rely on *down-stream muon spectrometer* (low threshold since dE/dx ≈ 240 MeV/m)
 Idea first implemented in the ICANOE proposal

Liquid Argon technology

* The LAr TPC technique is based on the fact that ionization electrons can drift over large distances (meters) in a volume of purified liquid Argon under a strong electric field. If a proper readout system is realized (i.e. a set of fine pitch wire grids) it is possible to realize a massive "electronic bubble chamber", with superb 3-D imaging.

Liquid Argon imaging on large scales

10m³ Module at LNGS

Cosmic Ray tracks recorded during the 10 m³ operation

"Big track" in T600 semimodule expected soon...

T600 assembly schedule

- * Completed *site preparation* in Pavia for the T600 cryostat (*Nov 1999*)
 - → "clean room", "assembly island", floor, ...
- * Delivery of the *1st cryostat* by AirLiquide (*Feb 2000*)
 - → Successful vacuum tightness and mechanical stress tests
- * Beginning of *assembly of the internal detector mechanics* (*Mar 2000*)
- * Completion of assembly and positioning of inner detector frames (Jul 2000)
- Installation of 30000 wires + signal cables (Jul 2000-Oct 2000)
- * Delivery of the *2nd cryostat* of AirLiquide (*Aug 2000*)
 - Successful vacuum tightness and mechanical stress tests
- Installation of *scintillation light* and all *slow control devices* (*Jul 2000-Dec* 2000)
- * H.V. and field electrodes system installation (Oct 2000- Jan 2001)
- ★ Installation of the 48 electronic racks on top of dewar (Dec 2000-ongoing)
- Installation of *external heat insulation* (for both dewars) and *LAr and LN₂ cryogenic circuits* (*Dec 2000-Jan 2001*)
- ★ Semi-module now ready to be sealed.

The ICARUS T600 module

Under construction

First half-module delivery in Pavia (Feb 29, 2000)

Assembly of the T600 internal detector (Mar-Jul 2000)

Second half-module (delivered Aug 2000)

Thermal floor

André Rubbia, ETH/Zürich, 3/9/01, Venice

Wire installation in T600 internal detector (Jul-Oct 2000)

André Rubbia, ETH/Zürich, 3/9/01, Venice

The three wire planes at $0^{\circ},\pm 60^{\circ}$ (wire pitch = 3mm)

T600 - Completed Internal Detector view

Slow control sensor (behind wire planes)

Man-hole (after sealing, the only way to get inside!)

The first ICARUS T600 prototype

- The T600 module is to be considered as a <u>fundamental</u> <u>milestone</u> on the road towards a total sensitive mass in the multi-kton range
 - →First piece of the detector to be complemented by further modules of appropriate size and dimension ⇒ Goal is to reach a multikton mass in LNGS tunnel in a most efficient and rapid way
- It has a physics program of its own, immediately relevant to neutrino physics, though limited by statistics (see hep-ex/0103008)

Proposed setup ICARUS 5kt in LNGS Hall B

André Rubbia, ETH/Zürich, 3/9/01, Venice

Muon bending measurement

We consider a design in which the muon escaping the liquid Argon is bent by a magnetized piece of iron

Muon charge misidentification

Fraction (%) of misidentified charge

35

40

B=2T10 **Wrong Sign Contamination (%)** μ momentum resolution: \star → 25% for a 2.5m long Fe L=1m 1 spectrometer with B=2T Wrong sign contamination * 10 → Charge confusion: ~10⁻⁴ L=2m 10 Large detection efficiency for \star low energy beam _3m 10 $\leftarrow \mu$ detection threshold (dE/dx = 240 MeV/m) 10 10 20 5 15 25 30 **Muon Momentum (GeV)**

A large magnet ?

An interesting possibility, to be further understood, is the creation of the B-field over the large volume encompassing the LAr with the help of a very large solenoid

Joule Power (non-superconducting):

$$P = \rho \frac{2(a+b)hB^2}{md\mu_0^2}$$

d=coil thickness, m=#windings, h=height, a=width, b=length

Parameter			
Argon volume	$8 \times 8 \times 16m^3$		
Argon mass	$1.4 \mathrm{kton}$		
Magnetic field	1.0 T		
Current	2000 A		
Conductor length	$150 \mathrm{km}$		
Resistance	$1 \ \Omega$		
Dissipated power	$4 \mathrm{MW}$		
Iron mass	$5 \mathrm{kton}$		

Neutrino Factory wish list

Determination of Δm_{23}^2 sign

Study matter effects

First detection of $v_e \rightarrow v_{\tau}$ oscillations

Over-constrain the oscillation parameters 🧲

Study CP violation in the leptonic sector

Try to show three concrete examples where detector considerations could be relevant...

Looking at the θ_{13} **term**

$$P(v_e \rightarrow v_{\mu}) = \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 (\Delta m_{32}^2 L/4E)$$

a realistic assumption at the NF \Rightarrow for $\Delta m_{21}^2 (L/4E) << 1$

$$\approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \, (\Delta m_{32}^2)^2 \, (L/4E)^2$$

Not always a correct assumption at the NF \Rightarrow for $\Delta m_{21}^2 (L/4E) << \Delta m_{32}^2 (L/4E) << 1$ Similarly,

$$P(v_e \rightarrow v_{\tau}) = \sin^2 2\theta_{13} \cos^2 \theta_{23} \sin^2 (\Delta m_{32}^2 L/4E)$$

for $\Delta m_{21}^2 (L/4E) << 1$

In contrast,

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) = \cos^4 \theta_{13} \sin^2 2\theta_{23} \Delta^2_{32}$$

Wrong-sign muon optimization

Over-constraining the parameters (I)

Combining all classes \Rightarrow (over-constrained) sensitivity to all oscillations!

Over-constraining the parameters (II)

✤ Check consistency between different observed oscillation processes

✤ Proof/rule out the existence of sterile neutrinos

ℜ First observation of $ν_e → ν_τ$

Ability to detect τ appearance is crucial

A. Bueno et.al. , Nucl. Phys. B589 (2000) 577

A way to rescale probabilities...

Matter effects

$$\sin^2 2\theta_m(D) = \frac{\sin^2 2\theta}{\sin^2 2\theta + \left(\pm \frac{D}{\Delta m^2} - \cos 2\theta\right)^2}$$

$$\lambda_m = L \times \sqrt{\sin^2 2\theta + \left(\pm \frac{D}{\Delta m^2} - \cos 2\theta\right)^2}$$

+ for neutrinos– for antineutrinos

where

$$D(E_v) = 2\sqrt{2}G_F n_e E_v \approx 7.56 \times 10^{-5} \quad eV^2 \left(\frac{\rho}{g cm^{-3}}\right) \left(\frac{E}{G eV}\right)$$

For example, for neutrinos:

Resonance: $D \approx \Delta m^2 \cos 2\theta \implies \sin^2 2\theta_m(D) \approx 1$

Suppression:

$$D > 2\Delta m^2 \cos 2\theta$$

 $\sin^2 2\theta_m(D) < \sin^2 2\theta$

Mixing in matter smaller than in vacuum

Effect tends to become "visible" for $L > \approx 1000 \text{ km}$

Behaviour at larger distances...

Looking for effects of \delta!

André Rubbia, ETH/Zürich, 3/9/01, Venice

The "CP-odd" term

$$\Delta CP = \frac{P(v_e \to v_{\mu}) - P(\overline{v}_e \to \overline{v}_{\mu})}{2} =$$

 $\approx f \times \Delta m_{12}^2 (L/4E_v) \times \sin^2(\Delta m_{23}^2 L/4E_v)$

for Δm_{21}^2 (L/4E_v) << 1

$$\approx f \times \Delta m_{12}^2 (\Delta m_{23}^2)^2 (L/4E_v)^3$$

for Δm_{21}^2 ($L/4E_v$) << Δm_{32}^2 ($L/4E_v$) << 1

So what to do at high energy?

See also P. Lipari, hep-ph/0102046

$$P(v_e \rightarrow v_\mu) \times E_v^2/L^2$$

1. The E_{ν}^{2} term takes into account that the NF likes to go to high energy \Rightarrow damps the part $\Delta m_{21}^2 (L/4E_v) \approx l$ 2. At "high energy", i.e. Δm_{21}^2 $(L/4E_{\nu}) << 1 \& \Delta m_{32}^2 (L/4E_{\nu}) << 1,$ there is no more oscillation \Rightarrow change of δ = change of θ_{13} !!! 3. At "high energy", the CP-effect goes like $\cos\delta$, as pointed out by Lipari \Rightarrow cannot measure sign of δ

So where is the compromise in L/E?

If L/E_v is fixed, what should be L and E_v ?

The magnitude of the CP effect (given by J) is known to be unaffected by matter $J = \cos\theta_{13} \sin\delta \sin2\theta_{12} \sin2\theta_{13} \sin2\theta_{23}/8$

Our "choice-point" for CP is at the fixed L/E_{v,max} given by: $E_{v,max} = \frac{2 \times 1.27 \times \Delta m^2 L}{\pi}$

When the neutrino energy becomes close to the MSW resonance, the effective oscillation wavelength increases, hence the CP effect at a fixed distance L becomes less visible.

Hence, we gain until the MSW resonance region and then loose

$$2\sqrt{2}G_F n_e E_v < \Delta m^2 \cos 2\theta \quad \Longrightarrow \quad 2\sqrt{2}G_F n_e \frac{2 \times 1.27 \Delta m^2 L}{\pi} < \Delta m^2 \cos 2\theta$$

$$L < \frac{\pi \cos 2\theta}{2 \times 1.27 \times 7.56 \times 10^{-5} \ eV^2 \left(\frac{\rho}{g cm^{-3}}\right)} \approx \frac{1.5 \times 10^4 \, km}{\left(\frac{\rho}{g cm^{-3}}\right)} \approx 5000 \, km$$

Dependence of probability on L/E_{ν}

x 10⁻⁶

The "scaling" with L/E_v of the probabilities is destroyed when $E_{v,max} > E_{v, resonance}$ due to matter effects.

The T-violation term dependence on L/E_{ν}

André Rubbia, ETH/Zürich, 3/9/01, Venice

The CP-violation term dependence on L/E_{ν}

Fit with constant L/E

However, keeping L/E_{μ} constant, we gain linearly with E_{μ} because of the NF flux dependence E_{μ}^{3}/L^{2}

At lower E_{μ} must compensate with higher muon intensities

 E_{μ} =30 GeV & L=2900 km

ightarrow 2.5*10²⁰ decays

 E_{μ} =7.5 GeV & L=732km

> 10²¹ decays

On the possibility to measure the electron charge

The presence of a magnetic field surrounding the LAr should allow toeven determine the charge of electronsB=1T

Wrong-sign lepton spectra

Measured oscillation probabilities

- **o** $\Delta m_{23}^2 = 3.5 \times 10^{-3} \text{ eV}^2$
- o $\Delta m_{12}^2 = 1. \times 10^{-4} \text{ eV}^2$
- $sin^2 2\theta_{13} = 0.05$
- o $sin^2 2\theta_{23} = 1$.
- o $sin^2 2\theta_{12} = 1$.
- **ο** δ₁₃=π/2
- 0 $10^{21} \mu$ decays E_{μ} =5 GeV
- o 10 kton detector

Direct comparison of oscillation probabilities for neutrinos and antineutrinos

Probability difference

Difference is significant for neutrinos (antineutrinos are matter-suppressed) after evaluation of statistical and systematic errors (5% variation in τ contribution)

$$P(\overline{v}_{e} \rightarrow \overline{v}_{\mu}) - P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$$

$$\stackrel{\text{antineutrinos}}{\xrightarrow{0.06}} \qquad \text{Antineutrinos}$$

$$\stackrel{\text{antineutrinos}}{\xrightarrow{0.06}} \qquad \text{Antineutrinos}$$

$$\stackrel{\text{antineutrinos}}{\xrightarrow{0.06}} \qquad \text{Antineutrinos}$$

$$\stackrel{\text{antineutrinos}}{\xrightarrow{0.04}} \quad \text{Antineutrin$$

Conclusion

- * The richness of the NF oscillation physics calls for *multikton detectors capable* of measuring all leptons and their charges!
- * A difficult task, leading to <u>different optimizations</u>, but
 - → MINOS-like (20kt?) & ICARUS-like (10kt?) (they would cost ≈ the same!) are more than just detector concepts
 - They could be envisaged, but they will be expensive and to build either of them will be a great enterprise !
- ★ The physics output will depend on the detector, <u>different optimizations</u>? e.g.
 - → For the best θ₁₃ sensitivity (10⁻⁵? the small mixing angle syndrome) it would suffice to have large mass (statistics!) and good muon capabilities at the highest energies
 - → For more subtle effects like *the study of δ-phase*, a detector with more redundancy and excellent detection in the range 1–15 GeV is favored
 - → If energy cannot be afforded, must go closer, keeping L/E constant (at the price of increasing the muon intensity!)
 - → Charge discrimination for electrons could provide *a "direct" proof* of T-violation !